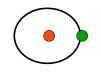
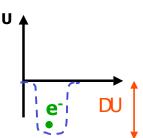


Mar 18 2005

web.mit.edu/8.02x/www

Note: This is 2001 version of EB, 2005 has different spark gap (wires instead of thumbnails).


Mar 18 2005


Note: This is 2001 version of EB, 2005 has different spark gap (wires instead of thumbnails).

Experiment EB

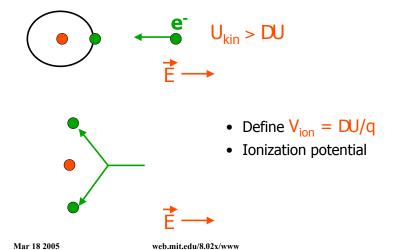
- Electrical Breakdown
 - You have seen many examples
 - Lightning!
 - Sparks (e.g. Faraday Cage Demo!)
 - Fluorescent tubes
 - Study in more detail
 - Reminder: Ionization

Ionization

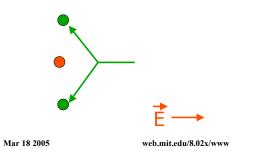


- Electrons and nucleus bound together
- Electrons stuck in potential well of nucleus
- Need energy DU to jump out of well
- How to provide this energy?

Mar 18 2005 web.mit.edu/8.02x/www Mar 18 2005 web.mit.edu/8.02x/www


Impact Ionization


Mar 18 2005

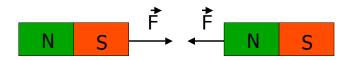

web.mit.edu/8.02x/www

Impact Ionization

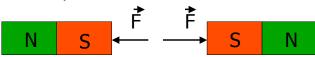
Impact Ionization

Magnets

• Permanent Magnets


- Two poles (called 'north' and 'south')
 - Dipole
- Let's look at some properties

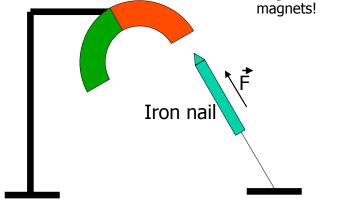
Mar 18 2005


web.mit.edu/8.02x/www

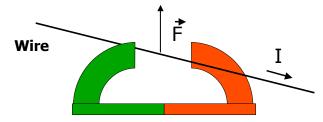
Magnetic Force

- New Force between Magnets
- Unlike Poles attract

• Like Poles repel

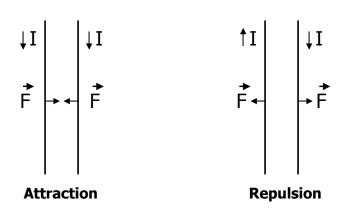


Mar 18 2005


web.mit.edu/8.02x/www

Magnetic Force

 Magnets also attract nonmagnets!


Magnet and Current

- Force on wire if I!= 0
- Direction of Force depends on Sign of I
- Force perpendicular to I

Current and Current

web.mit.edu/8.02x/www

Mar 18 2005