# Communication with Side Information at the Transmitter

Aaron Cohen 6.962 February 22, 2001

# Outline

- Basic model of communication with side info at the transmitter
  - Causal vs. non-causal side information
  - Examples
- Relationship with watermarking and other problems
- Capacity results
- Writing on dirty paper and extensions

## Basic Model



- Message M uniformly distributed in  $\{1, \ldots, 2^{nR}\}$ .
- State vector  $S^n$  generated IID according to p(s).
- Channel memoryless according to p(y|x,s).
- Sets  $\mathcal{S}$ ,  $\mathcal{X}$ , and  $\mathcal{Y}$  are finite.

# Types of side information

- 1. Causal side information:  $x_i$  depends only on m and  $s^i$ .
  - Denote capacity with  $C_c$ .
- 2. Non-causal side information:  $x^n$  depends on m and  $s^n$ .
  - In particular,  $x_i$  depends on m and  $s^n$  (the entire state sequence) for all i.
  - Denote capacity with  $C_{nc}$ .

#### Comments:

- $C_{nc} \geq C_c$ .
- Non-causal assumption relevant for watermarking.

# Comparison with last week



- Diagram of "lossy" source coding with side information.
- "Lossless" would require another encoder for  $Y^n$ .
- Encoder has non-causal side information.

# Example 1

State: 0 1 Prob: 1-p p 0 0

- $S = X = Y = \{0, 1\}.$
- $\bullet \ Y_i = X_i + S_i \mod 2.$
- $C_c = C_{nc} = 1.$
- With no side information, capacity is 1 h(p).

# Example 2: Memory with defects

State: a b cProb: 1-p p/2 p/2  $0 \xrightarrow{\epsilon} 0 \quad 0 \xrightarrow{\epsilon} 0 \quad 0$ 

- $S = \{a, b, c\}, \ \mathcal{X} = \mathcal{Y} = \{0, 1\}.$
- We will see that  $C_{nc} > C_c$ .

# Example 3: Writing on Dirty Paper



- $S^n$  is IID  $\mathcal{N}(0,Q)$ .
- $Z^n$  is IID  $\mathcal{N}(0,P)$ .
- $X^n$  subject to power constraint of P.
- Will show that  $C_{nc} = \frac{1}{2} \log \left(1 + \frac{P}{N}\right)$ .

# Relationship with watermarking



- $S^n$  is original data (e.g. Led Zeppelin song)
- M is information to embed (e.g owner ID number)
- Encoder restricted in choice of  $X^n$ .
- Non-causal side information reasonable assumption.
- Might want more general model for "Channel".

# Other related problems

Different types of side information:

- At any combination of encoder and decoder.
- Noisy or compressed versions of state sequence.

#### Different state generators:

- Non-memoryless.
- Non-probabilistic the arbitrarily varying channel.
- One probabilistic choice then fixed the compound channel.
- Current state depending on past inputs.

#### Applications:

- Wireless fading channels.
- Computer memories.

## Capacity results

1. Causal case:

$$C_c = \max_{p(u), f: \mathcal{U} \times \mathcal{S} \mapsto \mathcal{X}} I(U; Y),$$

where U is an auxiliary random variable with  $|\mathcal{U}| \leq |\mathcal{Y}|$  and

$$p(s, u, x, y) = \begin{cases} p(s)p(u)p(y|x, s) & \text{if } x = f(u, s) \\ 0 & \text{otherwise} \end{cases}.$$

2. Non-causal case:

$$C_{nc} = \max_{p(u|s), f: \mathcal{U} \times \mathcal{S} \mapsto \mathcal{X}} I(U;Y) - I(U;S),$$

where  $|\mathcal{U}| \leq |\mathcal{X}| + |\mathcal{S}|$  and

$$p(s, u, x, y) = \begin{cases} p(s)p(u|s)p(y|x, s) & \text{if } x = f(u, s) \\ 0 & \text{otherwise} \end{cases}.$$

# **Comments on Capacity Results**

- $C_c \leq C_{nc}$ .
  - If not, then we are in trouble.
  - Same objective function, but different feasible regions.
- Compare  $C_{nc}$  with rate distortion region for "lossy" source coding with side information. Given p(s, y),

$$R(D) = \min_{\substack{p(u|s), \ f: \mathcal{U} \times \mathcal{Y} \mapsto \mathcal{S}, \\ E[d(S, f(U,Y))] \le D}} I(U;Y) - I(U;S),$$

where p(u, s, y) = p(s, y)p(u|s), which gives the Markov condition  $(Y \Leftrightarrow S \Leftrightarrow U)$ .

#### Achievability: Causal Side Information

- Larger DMC Input  $\mathcal{X}^{\mathcal{S}}$  and output  $\mathcal{Y}$ .
- ullet Each input letter is a function from  ${\mathcal S}$  to  ${\mathcal X}$ .
- Only need to use  $|\mathcal{Y}|$  of the  $|\mathcal{X}|^{|\mathcal{S}|}$  input letters.
- ullet Auxiliary RV U indexes the input letters.
- Example: Memory with defects
  - $-t_0(s) = 0$  for all s,  $Pr(Y = 0) = (1 \epsilon)(1 p) + p/2$ .
  - $-t_1(s) = 1$  for all s,  $Pr(Y = 1) = (1 \epsilon)(1 p) + p/2$ .
  - Any other function from  $\mathcal{S}$  to  $\mathcal{X}$  gives one of these distributions on  $\mathcal{Y}$ .
  - $C_c = 1 h(p/2 + \epsilon(1-p)).$

## Converse: Causal Side Information

Let  $U(i) = (M, S^{i-1})$ .

- $(M, Y^{i-1}) \Leftrightarrow U(i) \Leftrightarrow Y_i$ .
- U(i) and  $S_i$  are independent.
- For small probability of error:

$$n(R - \delta) \leq I(M; Y^n)$$

$$\leq \sum_{i=1}^n I(M, Y^{i-1}; Y_i)$$

$$\leq \sum_{i=1}^n I(U(i); Y_i)$$

$$\leq nC_c,$$

## Achievability: Non-causal Side Information

Use dual to binning technique from last week.

- Choose distribution p(u|s) and function  $f: \mathcal{U} \times \mathcal{S} \mapsto \mathcal{X}$ .
- Codebook generation:
  - For each  $m \in \{1, \dots, 2^{nR}\}$ , generate  $\boldsymbol{U}(m,1), \dots, \boldsymbol{U}(m,2^{nR_0})$  IID according to p(u).
  - A total of  $2^{n(R+R_0)}$  codewords.
- Encoding:
  - Given m and  $s^n$ , find  $\boldsymbol{u}(m,j)$  jointly typical with  $s^n$ .
  - Set  $x^n = f(\boldsymbol{u}(m,j), s^n)$ .
- Decoding:
  - Find  $(\hat{m}, \hat{j})$  such that  $\boldsymbol{u}(\hat{m}, \hat{j})$  jointly typical with  $y^n$ .

## Achievability: Non-causal Side Information

- Encoding failure small if  $R_0 > I(U; S)$
- Decoding failure small if  $R + R_0 < I(U; Y)$ .
  - Need Markov lemma.
- Rate achievable if R < I(U;Y) I(U;S).
- Intuition:
  - Codebook bin  $\approx$  quantizer for state sequence.
  - If I(U;S) > 0, then use non-causal feedback non-trivially.

# Example: Memory with defects

- $\mathcal{U} = \{u_0, u_1\}, f(u_i, s) = i.$
- Joint distribution of S, U and X:

|   | $u_0, 0$          | $u_1, 1$          |
|---|-------------------|-------------------|
| a | (1-p)/2           | (1-p)/2           |
| b | $(1-\epsilon)p/2$ | $\epsilon p/2$    |
| c | $\epsilon p/2$    | $(1-\epsilon)p/2$ |

- $I(U;S) = H(U) H(U|S) = 1 (1-p) ph(\epsilon) = p(1-h(\epsilon)).$
- $I(U;Y) = H(Y) H(Y|U) = 1 h(\epsilon)$ .
- $C_{nc} = I(U;Y) I(U;S) = (1-p)(1-h(\epsilon)) > C_c$ .
  - Also capacity when state known at decoder.
  - Mistake in summary.

#### Converse: Non-causal side information

- Let  $U(i) = (M, Y_1, \dots, Y_{i-1}, S_{i+1}, \dots, S_n)$ .
- For small probability of error:

$$n(R - \delta) \leq I(M; Y^n) - I(M; S^n)$$

$$\leq \sum_{i=1}^n I(U(i); Y_i) - I(U(i); S_i)$$

$$\leq nC_{nc}$$

- Second step: mutual information manipulations.
- Markov chain in causal case not valid here.

# Writing on Dirty Paper



- $S_i \sim \mathcal{N}(0, Q), Z_i \sim \mathcal{N}(0, N), \frac{1}{n} \sum X_i^2 \leq P.$
- Costa shows  $C_{nc} = \frac{1}{2} \log \left(1 + \frac{P}{N}\right)$ .
  - Same as if  $S^n$  known to decoder.
  - Dual to Gaussian lossy source coding with side info.

## Capacity for Writing on Dirty Paper

- Pick joint distribution on known noise S, input X, and auxiliary random variable U:
  - $-X \sim \mathcal{N}(0, P)$ , independent of S.
  - $-U = X + \alpha S$
- Costa: Compute I(U;Y) I(U;S) and optimize over  $\alpha$ .
- New proof: Choose  $\alpha = \frac{P}{P+N}$  and see what happens.
- Important properties:
  - 1.  $X \alpha(X + Z)$  and X + Z are independent.
  - 2.  $X \alpha(X + Z)$  and Y = X + S + Z are independent.
  - 3. X has capacity achieving distribution for AWGN channel.
- Cannot do better than  $C(P, N) = \frac{1}{2} \log (1 + \frac{P}{N})$ .

# Writing on Dirty Paper, continued

• Step 1

$$\begin{split} I(U;Y) - I(U;S) &= \left(h(U) - h(U|Y)\right) - \left(h(U) - h(U|S)\right) \\ &= h(U|S) - h(U|Y) \end{split}$$

• Step 2

$$h(U|S) = h(X + \alpha S|S)$$
  
=  $h(X|S)$   
=  $h(X)$   $X$  and  $S$  independent

# Writing on Dirty Paper, continued

• Step 3

$$h(U|Y) = h(X + \alpha S|Y)$$

$$= h(X + \alpha(S - Y)|Y)$$

$$= h(X - \alpha(X + Z)|Y)$$

$$= h(X - \alpha(X + Z)) \qquad \text{Property 2}$$

$$= h(X - \alpha(X + Z)|X + Z) \qquad \text{Property 1}$$

$$= h(X|X + Z)$$

• Step 4

$$I(U;Y) - I(U;S) = h(X) - h(X|X + Z)$$
 Steps 1, 2 & 3  
=  $I(X;X + Z)$   
=  $C(P,N)$  Property 3

# Extension of "Writing on Dirty Paper"

For any distributions on S and Z, similar result if there exists X such that both

- X is capacity achieving for channel with additive noise Z.
- X a(X + Z) and X + Z independent for some linear  $a(\cdot)$ .

In particular,

- $\bullet$  S can have any (power-limited) distribution.
- $\bullet$  Z can be colored Gaussian.
  - Capacity achieving distribution also Gaussian (waterfilling).

Similar extension given by Erez, Shamai & Zamir '00.

## Writing on Dirty Tape

What about  $C_c$  for this problem?

• Only definitive result (Erez et. al.):

$$\lim_{N \to 0} \lim_{Q \to \infty} C_{nc} - C_c = \frac{1}{2} \log \left( \frac{\pi e}{6} \right)$$

- $\frac{\pi e}{6}$  = ultimate "shaping gain"
  - Asymptotic MSE difference of vector vs. scalar quantization.
- Suggested scheme: Codewords as sequences of scalar quantizers.
  - Version of Quantization Index Modulation (Brian Chen).
- Any ideas for how to find capacity non-asymptotically?