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The multiuser detection problem applies when we are sending data on the uplink

channel from a handset to a base station. The base station must demodulate and de-

code signals from K−1 interfering handsets. A related problem known as interference

cancellation arises on the down-link channel from the base station to the handset in

which the handset must separate the signal intended for it, from the signals that the

base station intends for other handsets in the cell. Methods for directly mitigating

interference from neighboring cells have generally not been addressed, probably be-

cause of the current practical difficulties of sharing large quantities of time sensitive

information between different cells.

There is an enormous literature on multiuser detection, but a few resources may

be helpful. The main resource is Verdu’s book [Verdu 1998]. The Fall 11/8/2000 pre-

sentation by C. Emre Koksal, entitled “Linear Multiuser Receivers” for this seminar

is quite helpful.

Matched Filter

In a Gaussian channel

p(yi|xi) = exp

(
− 1

2σ2

∫
[y(t)− xi(t)]

2dt

)
(1)

where x is the transmitted signal and y is the received signal, if we hypothesize two

possible transmitted signals xi and xj, we can determine which is more likely to have

actually been sent by comparing the likelihoods to see which is greater (maximum)

p(yi|xi) <> p(y|xj), (2)
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− 1

2σ2

∫
[y(t)− xi(t)]

2dt <> − 1

2σ2

∫
[y(t)− xj(t)]

2dt, (3)
∫

[y(t)− xi(t)]
2dt <>

∫
[y(t)− xj(t)]

2dt, (4)
∫

y(t)xi(t)dt− 1

2

∫
xi(t)

2dt <>

∫
y(t)xj(t)dt− 1

2

∫
xj(t)

2dt. (5)

This last relation states that to minimize the chance of a wrong decision as to

which x was actually sent, we must choose the x with the minimum mean squared

distance to y. We can use the sufficient statistic

∫
y(t)xi(t)dt, (6)

to make an optimal decision if x1, . . . , xm are linearly independent.

In general, g(y) is a sufficient statistic for θ if given the observations y, the condi-

tional distribution p(y|g(y)) does not depend on θ. In other words, g(y) contains all

of the information in y necessary to infer θ.

We can apply the above argument to the single user version of the CDMA channel.

The received signal is

y(t) = Axs(t) + σn(t), t ∈ [0, T ], (7)

where the deterministic signature sequence (spreading code) s has unit energy,

the noise n is white and Gaussian, and the transmitted symbol b ∈ −1, 1. We can use

a correlator with a model h(t) of the signature waveform s(t) to make an estimate

x̂ = sgn

(∫
h(t)y(t)dt− 1

2

∫
xi(t)

2dt

)
(8)

of the correct transmitted symbol x. As long as the noise is uncorrelated, this

will produce the most accurate result if h is a (nonzero) multiple of s. This linear

detector is known as a matched filter and in the single user environment it is optimal

in the sense that the SNR is maximized. Another way to say this is that the matched

filter yields the maximum-likelihood (ML) detector for the single-user channel [?].

In a multiuser channel, we can write the received signal as
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Y =
K∑

i=1

Xisi + W (9)

and we can use a bank of matched filters to demodulate each independent user. In

order to do this each matched filter must either be synchronized to the bit epochs of

its corresponding transmitter or we must over-sample the received signal and use an

asynchronous detector architecture. Synchronization in multiuser detectors (called

acquisition and tracking) will not be discussed in this chapter. If the matched filters

are perfectly synchronized and the signature sequences sk for all the k users are all

orthogonal to one another (linearly independent), then the matched filter is optimal

and the results are the same as for the single user problem.

An important question is, “how many mutually orthogonal signals with (approx-

imate) duration T and (approximate) bandwidth B can be constructed? In fact, no

signal is strictly time-limited or band-limited, so instead we ask that the amount of

signal energy that lays outside the time interval [0, T ] or outside the band [−B, B]

does not exceed a bound ε. No explicit answer for the number of orthogonal signals

in terms of B, T and ε is known, but unless BT is very small, the answer is essentially

2BT . Therefore, a K-user orthogonal CDMA system employing antipodal modulation

at the rate of R bits per second requires bandwidth approximately equal to

B =
1

2
RK. (10)

Nonorthogonal Spreading Sequences

However, we need not always enforce the strict condition that the signals be or-

thogonal in CDMA. For example, the performance of the matched filter receiver will

be degraded in the presence of nonorthogonal interferers, but we still may be able

to correctly demodulate the signals from each user if the interference is bounded.

This still requires careful selection of the signature waveforms so that their cross-

correlations are fairly low (compared to the signature waveform energies ‖si‖2 =
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〈si, si〉) [Abend 1970]. More to the point, maintaining strict orthogonality involves

maintaining strict synchronization among all the users of the system, which is a very

difficult control problem in a real world channel due to real-valued multi-path time

delays.

Even if global symbol and/or spreading sequence synchronization were possible,

removing the restriction of orthogonal signature waveforms has several major benefits

that make CDMA attractive for multiuser communications systems:

• The users can be asynchronous and yet “quasi-orthogonality” can be maintained

by adequate design of the signature waveforms.

• The number of signature users is no longer constrained to twice the duration-

bandwidth product of the signature waveforms.

• Channel sharing experiences graceful degradation; Reliability depends on the

number of simultaneous users rather than on the (much larger) number of po-

tential users. Therefore, unlike orthogonal multiaccess, it is possible to trade

off reception quality for increased capacity.

With nonorthogonal CDMA, the simple matched filter is no longer optimal (even

in the presence of white Gaussian noise). For example it suffers from the near-far

problem: any interferer that is sufficiently powerful at the receiver causes arbitrar-

ily high performance degradation. Furthermore, by designing receiver demodulation

schemes that unlike the matched filter, take into account the structure of the mul-

tiaccess interference (MAI), it is possible to design a system with increased spectral

efficiency, decreased output power, and robustness against imbalances in the received

powers of various users.

The matched filter still plays an important role in multiuser detection, however,

since the output of a bank of matched filters provides a minimal sufficient statistic

for detection [Verdu 1986].
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Decorrelator

The decorrelator, like the matched filter, is a linear multiuser detector, but unlike the

matched filter, it uses information from all of the other users to remove interference.

The decorrelator inverts the channel leaving the received signal without interference

but by doing so also increases the noise. The advantage of the decorrelator is that

no knowledge of the received power is necessary and its performance is independent

of the power of interfering users so that it solves the near-far problem. Both syn-

chronous and asynchronous decorrelators have been considered, but here we consider

only the synchronous case as the generalization to the asynchronous case is relatively

straightforward. Equation 9 can be written in matrix form as

Y = SX + W, (11)

where X = [X1 . . . XK ]T and S = [s1 . . . sk]
T is the N × K matrix of signature

sequences. For one user S would look like this,




s1,1

s1,2

...

s1,N

s2,1

s2,2

...

s2,N

. . . sTu,1

sTu,2

...

sTu,N




(12)

and extended to multiple users it takes the form
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


s1
1,1 . . . sK

1,1

s1
1,2 . . . sK

1,2

...
...

s1
1,N . . . sK

1,N

s1
2,1 . . . sK

2,1

s1
2,2 . . . sK

2,2

...
...

s1
2,N . . . sK

2,N

. . .




(13)

A bank of matched filters would mean filtering Y by multiplying it by ST yielding,

R = ST SX + STW (14)

If however, we also multiply by (ST S)−1, then we get

U = (ST S)−1R = X + (ST S)−1STW (15)

We define the overall linear filter N = (ST S)−1ST . This is called the decorrelator.

The covariance of N , KN is

KN = (ST S)−1σ2. (16)

The Optimum Multiuser Detector (Nonlinear)

The optimum receiver for a DS/CDMA asynchronous Gaussian multiple access chan-

nel was first shown by Verdu [Verdu 1986] and is covered in a chapter in his book

[Verdu 1998]. Although theoretically optimal, the optimum detector for this channel

is unfortunately not computationally feasible in practical systems [Verdu 1989]. It is

important, however, as an upper bound on performance and as a starting point for

designing reduced complexity decoders. The optimum detector for the synchronous
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channel computational feasible, however, so we examine it first.

The matched filter assumed knowledge of the signature waveform and its timing

(synchronization). The optimum detector requires this knowledge as well as knowl-

edge of the amplitude for each of the users and the total noise level. The optimum

MAP detector is defined as,

b̂MAP = arg max
b∈{−1,1}(P+1)K

P (b|y) (17)

b̂MAP = arg max
b∈{−1,1}(P+1)K

P (b|y)p(y) (18)

b̂ML = arg max
b∈{−1,1}(P+1)K

p(y|b)P (b). (19)

By applying Bayes’ rule and assuming that the vector b ∈ {−1, 1}(P+1)K) was

transmitted and that the probability of b is P (b) = 2−(P+1)K , ie. all the transmitted

data vectors are independent and equally likely, we can write the optimum maximum

likelihood detector,

b̂ML = arg max
b∈{−1,1}(P+1)K

P (y|b) (20)

where P is the number of symbols in the signature sequence, and K is again the

number if users, and where b̂ is the data vector that maximizes the pdf of received

vector y. This is known as maximum likelihood sequence estimation (MLSE).

Optimum Multiuser Detector for Two-User Synchronous Chan-

nel

If the received signal for the two-user synchronous channel is

y(t) = A1x1s1(t) + A2b2s2(t) + σn(t), t ∈ [0, T ], (21)

then the individual minimum probability of error decision for user 1 is obtained

by selecting the value of b1 ∈ −1, +1 that maximizes the a posteriori probability
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P [b1|y(t), 0 ≤ t ≤ T ] (22)

and analogously for user 2. We could also ask for a joint minimum probability of

error by requiring that the receiver select the pair (b1, b2) that maximizes the joint a

posteriori probability

P [(b1, b2)|y(t), 0 ≤ t ≤ T ]. (23)

We can write the single user optimum detector 22 in terms of joint optimum

detector 23

P [b1|y(t), 0 ≤ t ≤ T ] = P [(b1, +1)|y(t), 0 ≤ tlT ] + P [(b1,−1)|y(t), 0 ≤ tlT ]. (24)

Since the transmitted data are equiprobable, the joint MAP estimate is the max-

imum likelihood estimate. In practice, the individual and joint optimum decision

strategies will only give different decisions in very noisy situations where the prob-

ability of error is very large. For the received signal given in equation 21, the joint

optimum decisions for two users are given by

b̂1 = sgn

(
A1y1 +

1

2
|A2y2 − A1A2ρ| − 1

2
|A2y2 + A1A2ρ|

)
, (25)

and

b̂2 = sgn

(
A2y2 +

1

2
|A1y1 − A1A2ρ| − 1

2
|A1y1 + A1A2ρ|

)
, (26)

where A1, A2 are the amplitudes of the received signals from users 1 and 2, and

ρij = R is the signature sequence crosscorrelation matrix given by

ρij = 〈si, sj〉 =

∫ T

0

si(t)sj(t)dt (27)

which for two users reduces to
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ρ =

∫ T

0

s1(t)s2(t)dt. (28)

The optimum decisions for the users taken individually is very similar in form,

b̂1 = sgn

(
y1 − σ2

2A1

log
cosh

[
A2y2+A1A2ρ

σ2

]

cosh
[

A2y2−A1A2ρ
σ2

]
)

, (29)

but the absolute value function is replaced by cosh. For large signal to noise

ratios (A1, A2 À 0), the individual optimum decision converges to the jointly optimum

decision as the cosh function more and more approximates an absolute value function.

Optimum Multiuser Detector for the Asynchronous Channel

Now we turn to the optimum detector in the asynchronous channel. The detector

in the asynchronous channel is computationally complex for a simple reason; making

optimum decisions in the asynchronous channel requires observation of the entire

frame of transmitted bits. Suppose we want to decode a particular bit, b1[0]. The

conventional matched filter or decorrelator detectors as well as the optimum detector

in the synchronous channel can all decode a single bit at a time. This is not the case

in the asynchronous channel. For example, in the two-user case, a given bit such as

b1[0] will overlap user’s bits bits b2[−1] and b2[0] to a greater or lesser degree. To be

optimum, the detector should use information about the values of those interfering

bits by extending the observation interval from [0, T ] to [τ − T, τ + T ]. However,

once we do this, the new observation interval contains bits b1[−1] and b1[1] so these

must be included in the estimate by again extending the observation interval. Unless

the entire bit frame is included, the decision on bit b1[0] or any other bit will be

suboptimal.

We again examine the two user case to simplify the exposition. We will need the

following definitions. There are 2M + 1 transmitted bits from each of our 2 users,

bk+i2 = bk[i], k = {1, 2}, i = {−M, . . . , M}. (30)
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Our objective is to compute a b that maximizes

f({y(t), t ∈ [−MT,MT + 2T ]}|b) = exp

(
− 1

2σ2

∫ MT+2T

−MT

[y(t)− St(b)]2dt

)
(31)

where

St(b) =
K∑

k=1

M∑
i=−M

Akbk[i]sk(t− iT − τk). (32)

Maximizing this only involves maximizing the term

ω(b) = 2

∫
St(b)y(t)dt−

∫
S2

t (b)dt, (33)

The observations enter into the (nonlinear) function to be optimized exclusively

via the outputs of matched filters, so once again, y is a sufficient statistic for b.

A detailed exposition is beyond the scope of this review, but suffice it to say that

the Viterbi algorithm can be applied to this optimization problem. The intuition is

that decoding each bit only depends on the bits immediately before and after it, so

we can draw a trellis and a forward-backward type dynamic programming algorithm

can be applied to calculate the maximum likelihood estimates for each bit.

With the maximum likelihood sequence estimation (MLSE) receiver operating in

low noise conditions, the user with the lowest probability of detection error experiences

the same performance as the user in a single user system. The complexity of the

MLSE receiver is not exponential in the length of the spreading code, but it does

scale exponentially O(2K) with the number of users K and is classified as NP-hard

[Verdu 1989]. Due to the complexity of the MLSE receiver, a number of reduced

complexity receivers have been developed, which we will examine next.
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Iterative Multiuser Detection

There have been a variety of suboptimal (but lower complexity) non-linear detec-

tors. Multistage receivers are receivers in which decisions made by the first stage are

used for interference cancellation in the second stage. Decision feedback equalizers

(DFE) using this principle have been known for quite some time. Xie et al. also

proposed a sequential decoding scheme based on the original trellis decoder of Verdu

which decoded the MLSE solution in a suboptimal way but with substantially better

performance than a matched filter.

Following on success of turbo codes and the understanding of their decoding on

probability graphs, there has been much recent interest in designing iterative mul-

tiuser receivers following the same principles. Here we discuss a receiver that is

derived from the maximum a posteriori (MAP) criterion for the joint received signal,

but uses only single user decoders. “Iterating” the system is utilized to greatly im-

prove performance. I carefully follow the exposition in a paper by Reed et al. found

in the bibliography of this document.

Each user uses a single user turbo code for forward error correction in addition to a

randomly generated signature sequence (spreading code). With randomly generated

spreading codes, performance is on average the same for synchronous or asynchronous

system, given a large number of users. Furthermore, using random codes (which are

not at all guaranteed to be orthogonal) it is theoretically possible to achieve single-

user performance.

Giallorenzi et al. [Giallorenzi 1996] formulated an optimal multiuser sequence

estimator for an asynchronous DS-CDMA system where each user employs convoluti-

nonal error control coding. They found that the complexity per bit of information

using the MLSE solution grows exponentially with the number of users in the system

and the number of states in each user’s encoder. Rather than jointly estimate the

spreading sequence and the error control code, various proposals to factor the graph

into subsystems to reduce the overall complexity of the decoding/demodulation task

while maintaining performance.
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We describe the trellis-based system proposed by Reed et al. which decomposes

the receiver into a separate equalizer (multiuser detector) and decoder. The multiuser

decoder is derived from a maximum a posteriori (MAP) criterion, that maximizes

the probability of a correct symbol decision. This MAP-based multiuser receiver

is concatenated with a single user soft-in/soft-out trellis decoder for the single-user

turbo code employed by the transmitters.

The System and the Channel

For this discussion, the uplink communication system transmits convolutional coded,

discrete time, perfect square pulses (no pulse shaping or inter-symbol interference

(ISI), and has no synchronization errors or multipath. The channel model adds Gaus-

sian noise of variance σ2 with samples taken synchronously at the chip rate.

K users transmit L coded bits d
(k)
t ∈ {+1,−1}, where k ∈ {1, . . . , K} is the user

number and t ∈ {0, . . . L − 1} indexes the bits. The spread sequence employed by

user k on bit t consists of N chips denoted by

s
(k)
t ∈ {−1/

√
N, . . . , +1/

√
N}N . (34)

The chips of the spreading code are generated randomly and independently for

each user k and for every bit t which is statistically the same as using a pseudorandom

sequence that is much longer than the spreading length N . As can be seen in figure

0-1, the channel sums the encoded signals from all of the users and adds Gaussian

noise.

The channel output et at time t can be written as

et = Atdt + ntCN (35)

where

At = (s1
t , . . . , s

K
t ) ∈ {−1/

√
N, . . . , +1/

√
N}N×K (36)
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Figure 0-1: Convolutional coded synchronous multiuser channel

is the bank of spreading codes, one spreading code for each user. The matched

filter (MF) output yt at time t is then

yt = AT
t Atdt + AT

t nt ∈ CK

= Htdt + zt ∈ CK (37)

where

dt = (d
(1)
t , . . . , d

(K)
t )T ∈ {+1,−1}K (38)

is the data vector, Ht = AT
t At ∈ RK×K is the crosscorrelation matrix of the

spreading sequences, and zt and nt are the correlated and uncorrelated noise vectors,

respectively.
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Decomposing the Receiver

The receiver takes the matched filter channel output and generates the conditional

channel probabilities p(yt|dt) (multivariate Gaussian conditional probabilities). The

metric generator then calculates the marginal probabilities p(yt|d(k)
t ) for the kth de-

coder. The single user soft-in/soft-out FEC decoders then generate the a posteriori

coded bit probabilities Pr{d(k)
t = d|y(k)} for user k for coded block size 0 to L − 1.

The a posteriori coded bit probabilities are then used as a priori information for the

metric generator on the next iteration. This information flow is shown in figure 0-2.

The output from the single user’s decoder can be taken as the system’s bit estimates

after a suitable number of iterations. Probabilities related to the coded bits d
(k)
t are

iterated around the receiver, while the information bits b
(k)
j are only generated when

a decision by the receiver is finally required.

Encoder

(K users)

Multiuser

Channel

Likelihood

Calculation

Metric

Generator

K Single

User

Decoders

bt dt yt p(yt | dt)




p(yt | dt
(K))Pr(dt

(K)
 =d | y(K))

bt
^

Figure 0-2: A decomposition of an iterative convolutional coded multiuser receiver

From the matched filter, we know that the conditional probability of yt is

p(yt|dt) =
1

(2π)
K
2 |Htσ2| 12

exp{− 1

2σ2

(
yT

t H−1
t yt − 2yT

t dt + dT
t Htdt

)} (39)

The MAP decision rule for the metric generator sets
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d̂t = arg max
dt

Pr{dt|yt} (40)

= arg max
dt

p(yt|dt)Pr{dt}. (41)

Since there are K users using binary symbol alphabets, there are 2K hypotheses

of the coded bits sent at time t. If each user encodes their coded bit sequence with

a code with memory ν then there will be 2ν possible states. When the DS/CDMA

channel and the FEC code are jointly detected, the total complexity will beO(2K+Kν).

When we partition the receiver into a separate decoder for the FEC decoder and the

DS/CDMA channel decoder, the complexity is reduced to 2K + 2ν .

APP Inputs to the FEC Decoder

Say there are n coded bits d
(k)
t , . . . , d

(k)
t+n−1 for every information bit bj, denoted as

d
(k)
j . We want to calculate the a posteriori probability

Pr{d(k)
t′ = d|y(k)} =

∑

m′

∑

d
(k)
j

Pr{Sj−1 = m′; d(k)
j |y(k)} (42)

where Sj is the state at time j and m′ ranges over all code states. Vector d
(k)
j

is the hypothesized channel bit vector for a particular user k for a particular FEC

code trellis transition at time j, where t ≤ t′ ≤ t + n − 1. One way that t his can

be calculated is by using the MAP algorithm. The FEC decoder takes as input the

state transition probability.

APP Inputs to the Metric Generator

The a posteriori probabilities p(dt = d|yt) are the outputs of the FEC decoder. We

assign them as the a-priori input probabilities to the metric generator.

Pr{d(k)
t = Pr{d(k)

t |y(k)}. (43)
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This is okay since there are no correlations between the single user convolutional

codes and the spreading codes. On the first iteration, these probabilities are set to 1
2

for all k.

Computational Complexity Reduction

The computational complexity of this iterative receiver includes exponential com-

plexity in the number of users just like the optimum decoder. The complexity is

dominated by a 2K term in the likelihood generation and the metric generation.

First we try to reduce the complexity of the likelihood generator. Since the first

term in the exponential of equation 39 is independent of the variable d we can simplify

it to

p(yt|dt) =h exp{− 1

2σ2

(
2yT

t dt − dT
t Htdt

)}. (44)

Even so there are 2K hypotheses that need to be tested by the likelihood generator

and these likelihoods are then passed to the metric generator. This is the source of

the complexity in these modules. Further methods, however, can be used to reduce

the complexity, for example, by only computing an update of the least significant bit

to the likelihoods in each iteration. A full discussion of such methods are beyond the

scope of this review which only aims to bring together ideas from turbo decoding,

factor graphs and message passing with the problem of multiuser detection.

When comparing this iterated multiuser detector against the performance of a

decorrelator detector concatenated with the same turbo FEC that was used in the

iterative decoder, we see that the iterative decoder performs at least 3dB better even

with the complexity reduction techniques.
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