
The Expectation-Maximization and

Alternating Minimization Algorithms

Shane M. Haas

September 11, 2002

1 Summary

The Expectation-Maximization (EM) algorithm is a hill-climbing approach to
finding a local maximum of a likelihood function [7, 8]. The EM algorithm
alternates between finding a greatest lower bound to the likelihood function
(the “E Step”), and then maximizing this bound (the “M Step”). The EM
algorithm belongs to a broader class of alternating minimization algorithms [6],
which includes the Arimoto-Blahut algorithm for calculating channel capacity
and rate distortion functions [1, 3], and Cover’s portfolio algorithm to maximize
expected log-investment [4].

2 The Expectation-Maximization (EM) Algorithm

The primary purpose of this report is to introduce the EM algorithm and ex-
amine its relationship to other alternating minimization algorithms. For good
tutorials on the EM algorithm, see [10, 2]. Roweis has a good review of linear
Gaussian models, using the EM algorithm to estimate the model parameters
[13]. This paper also provides pseudo-code for many popular EM applications.
The book [9] is a more complete reference on the EM algorithm.

The basic problem of maximum likelihood estimation is to find the parameter
θ that maximizes the likelihood function L(θ) ≡ f ( y | θ ) for a given observation
y. Because the logarithm is an increasing function, an equivalent problem is to
find the parameter θ that maximizes the log-likelihood, i.e.

θ̂ = argmax
θ

log f ( y | θ ). (1)

If the likelihood (or log-likelihood) function is sufficiently well-behaved, then
we can sometimes calculate a closed-form solution for the maximum likelihood
estimator. More often than not, however, a closed form solution does not exist,
and we must find the maximum using numerical optimization techniques, such
as gradient-based ascent or the Newton-Raphson method. The EM algorithm
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is one such hill-climbing algorithm that converges to a local maximum of the
likelihood surface.

As the name suggests, the EM algorithm alternates between an expectation
and a maximization step. The “E step” finds a lower bound that is equal to
the log-likelihood function at the current parameter estimate θk. The “M step”
generates the next estimate θk+1 as the parameter that maximizes this greatest
lower bound. This alternating process is shown pictorially in Fig. 1.

The EM algorithm, therefore, is a “divide and conquer” approach that breaks
the original optimization problem into two hopefully easier problems. It then
alternates between solving each easier optimization problem, using the solution
of one to solve the other.
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Figure 1: The EM algorithm alternates between finding a greatest lower bound
(“E step”), and maximizing this bound (“M step”).

The set of log-likelihood lower bounds comes from introducing a hidden or
unobserved random variable x that has a joint density with the observation,
q (x, y | θ ). The likelihood function is then f ( y | θ ) =

∫
q (x, y | θ ) dx. This

hidden variable often has a natural physical meaning such as the hidden state of
a linear dynamical system [14] or hidden Markov model [12], and can simplify
the likelihood expression.

The log-likelihood lower bounds are parameterized by an arbitrary proba-
bility density p (x ) not necessarily equal to

∫
q (x, y | θ ) dy for this hidden

variable. The lower bounds come from applying Jensen’s inequality:
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L(θ) ≡ log f ( y | θ )

= log

∫

q (x, y | θ )dx

= log

∫

p (x )
q (x, y | θ )

p (x )
dx

≥

∫

p (x ) log

[
q (x, y | θ )

p (x )

]

dx (2)

≡ F [ p, q(θ) ].

As seen in Figure 1, the E step finds the density p (x ) that maximizes this
lower bound for the current estimate θk. The M step then finds the value of
θ that maximizes the lower bound generated by this density. This alternating
process is summarized below:

E Step: pk+1 = argmax
p

F [ p, q(θk) ], (3)

M Step: θk+1 = argmax
θ

F [ pk+1, q(θ) ]. (4)

2.1 The E Step

We will now focus on finding the probability density p (x ) that maximizes the
lower bound F [ p, q(θk) ] while holding θk fixed. But first, we will examine three
interpretations of what this lower bound family represents:

Free Energy: One interesting interpretation is that the lower bounds are the
negative of a quantity known in statistical physics as free energy [11].
Defining energy as − log q (x, y | θ ), the free energy for a given y is the
average energy with respect to p (x ) minus the entropy of p (x ), i.e.

−F [ p, q(θ) ] = −E log q (x, y | θ )
︸ ︷︷ ︸

Avg. Energy

− [−E log p (x )]
︸ ︷︷ ︸

Entropy

, (5)

where the expectations are with respect to p (x ). The E step, therefore,
chooses p (x ) to minimize the free energy for the current parameter es-
timate θk. For a fixed p (x ), the entropy term does not depend on the
parameter θ. Consequently, the M step minimizes that average energy
with respect to the parameter θ, holding constant the density found in
the E step.

KL Divergence: Another interpretation of this lower bound family is in terms
of the Kullback-Leibler (KL) informational divergence between p (x ) and
q (x, y | θ ) for a given y, i.e.

F [ p, q(θ) ] = −D[ p ‖ q(θ) ], (6)
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where

D[ p ‖ q(θ) ] ≡

∫

p (x ) log

[
p (x )

q (x, y | θ )

]

dx. (7)

Notice that for a fixed y, q (x, y | θ ) does not integrate to unity over x,
and hence, as defined, this divergence might be negative.

We now have another interpretation of the E step as choosing a conditional
density on x, p (x ), that minimizes the KL informational divergence be-
tween this density and the joint density of x and y, q (x, y | θ ), for a fixed
realization of y.

This interpretation will be important when relating the EM algorithm to
other alternating minimization algorithms in [6]. The maximum-likelihood
problem can be viewed as an alternating minimization problem, i.e.

θ̂ = argmin
θ

min
p

D[ p ‖ q(θ) ], (8)

where the E step performs the minimization over p for a fixed value of θ
and the M step minimizes over θ for a fixed value of p.

KL Divergence: The third interpretation of the lower bound is also in terms
of a divergence, and gives more insight into its relationship to the log-
likelihood and to its maximization. Let w (x | y, θ ) be the conditional
probability function implied by q (x, y | θ ), i.e.

w (x | y, θ ) =
q (x, y | θ )

f ( y | θ )
, (9)

where f ( y | θ ) =
∫

q (x, y | θ ) dx. We can then express the lower bound
as

F [ p, q(θ) ] =

∫

p (x ) log

[
w (x | y, θ )f ( y | θ )

p (x )

]

dx

= log f ( y | θ ) − D[ p ‖ w(θ) ]. (10)

Notice that w (x | y, θ ) does integrate to unity over x, and hence

D[ p ‖ w(θ) ] ≥ 0,

with equality when p (x ) ≡ w (x | y, θ ).

We now see that the lower bound is actually the log-likelihood minus the
divergence between the arbitrarily chosen density, p (x ), and the actual
conditional density, w (x | y, θ ). Choosing p (x ) ≡ w (x | y, θ ), therefore,
maximizes the lower bound for a fixed value of θ. Furthermore, this choice
makes the lower bound equal to the log-likelihood at this particular value
of θ as illustrated in Fig. 1.
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Based on this third interpretation, the E step is

E Step: pk+1 = argmax
p

F [ p, q(θk) ] = w (x | y, θk ), (11)

or using Baye’s Rule

E Step: pk+1 = w (x | y, θk ) =
h( y | x, θk )π(x | θk )

∫
h( y | χ, θk )π(χ | θk )dχ

, (12)

where h( y | x, θ ) = q (x, y | θ )π(x | θ ) and π(x | θ ) =
∫

q (x, y | θ ) dy. This
step of the EM algorithm is called the expectation step because the lower bound
that it maximizes is expressed in terms of conditional expectations as seen in
(5).

2.2 The M Step

The M step finds the value of θ that maximizes the greatest lower bound
F [ pk+1, q(θ) ] produced by the E step. Evaluating the lower bound at this
maximizing distribution, i.e. pk+1(x) = w (x | y, θk ), results in

F [ pk+1, q(θ) ] =

∫

w (x | y, θk ) log

[
q (x, y | θ )

w (x | y, θk )

]

dx

=

∫

w (x | y, θk ) log q (x, y | θ ) dx

−

∫

w (x | y, θk ) log w (x | y, θk ) dx. (13)

Because the second term does not depend on θ, the M step becomes

M Step: θk+1 = argmax
θ

∫

w (x | y, θk ) log q (x, y | θ ) dx. (14)

Notice that the M-step maximizes the conditional expectation of the log-joint
observation and the hidden variable density, q (x, y | θ ). The unknown param-
eter in the conditional density w (x | y, θ ) is fixed to its previous estimate, θk,
and does not vary in the maximization.

Unlike the E step, the M step is problem specific. In other words, maximizing
F [ pk+1, q(θ) ] will depend on the structure of the problem under consideration.

3 Example: Mixture Problem

To illustrate the EM algorithm we will examine the mixture problem from the
introductory chapter of [9] and the applications section of [6]. This mixture
problem assumes that the observed data y = {y1, . . . , yN} is generated in the
following manner. For each sample, a group g, 1 ≤ g ≤ G, is randomly cho-
sen with unknown probability πg. The observed sample yn is then randomly
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generated according to a known probability density, hg(yn), for group g. Fur-
thermore, each sample is generated independently. The maximum-likelihood
problem is to find the group probabilities, θ = {π1, . . . , πG−1}, that maximize
the log-likelihood function

L(θ) =

N∑

n=1

log

{
G∑

g=1

hg(yn)πg

}

. (15)

The constraint
∑G

g=1
πg = 1 is enforced by defining πG = 1 −

∑G−1

g=1
πg,

and only estimating θ = {π1, . . . , πG−1}. For simplicity, we will not enforce the
constraints that each πg be non-negative. This assumption does not hurt us if
the components of the maximizing parameter are non-negative. Denote the set
of all valid parameters as Θ. Elements of Θ have G− 1 real components whose
sum is less than or equal to one.

Notice that for a given y, this log-likelihood function is concave with respect
to the parameters because it is the sum of concave functions. An example of a
log-likelihood realization is shown in Figure 2 for five observations (N = 5) and
two groups (G = 2).
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Figure 2: An example of the log-likelihood surface for a mixture of two groups
(G = 2) with five observations (N = 5)

Even though the log-likelihood is concave, a closed form solution for its
maximum does not exist. We can use the EM algorithm, however, to iteratively
find the maximum.

To use the EM algorithm we will introduce the unobserved or hidden variable
xn that takes a value g, if group g produced the sample yn. The joint density
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of x = {x1, . . . , xN} and y = {y1, . . . , yN} for a given θ is, therefore,

q (x, y | θ ) =
N∏

n=1

hxn
(yn)πxn

. (16)

The EM algorithm proceeds as follows. The E step (11) produces the con-
ditional density (9) based on the current parameter estimate, i.e.

E Step: pk+1 = w (x | y, θk ) =

N∏

n=1

Pr{xn | yn, θk}, (17)

where Baye’s rule gives

Pr{xn = g | yn, θk} =
hg(yn)πk

g
∑G

γ=1
hγ(yn)πk

γ

≡ mk
n(g), (18)

and πk
g denotes the estimate of the group g probability from the current param-

eter estimate θk.
The M step (14) then finds the parameter θ that maximizes

E[ log q (x, y | θ ) ] =

N∑

n=1

(E[ log hxn
(yn)] + E[ log πxn

]) , (19)

where the expectation is with respect to pk+1(x) = w (x | y, θk ). We can ignore
the first term because it does not depend on θ. The expectation in the second
term is

E[ log πxn
] =

∑

x

w (x | y, θk ) log πxn

=

G∑

g=1

∑

x:xn=g

w (x | y, θk ) log πg

=

G∑

g=1

Pr{xn = g | yn, θk} log πg

=
G∑

g=1

mk
n(g) log πg. (20)

This result can also be seen as an iterated expectation,

E[ log πxn
] = E[E[ log πg | xn = g, y, θk] ] = E[ log πg],

where this last expectation is with respect to Pr{xn = g | yn, θk} ≡ mk
n(g).

Differentiating E[ log q (x, y | θ ) ] with respect to πg, gives the necessary
condition for a fixed point:

∂E[ log q (x, y | θ ) ]

∂πg

=

N∑

n=1

mk
n(g)

πk+1
g

−

N∑

n=1

mk
n(G)

πk+1

G

= 0, 1 ≤ g ≤ G − 1. (21)
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This condition implies that

M Step: πk+1
g =

∑N
n=1

mk
n(g)

∑N
n=1

∑G
g=1

mk
n(g)

=
1

N

N∑

n=1

mk
n(g), (22)

maximizes the log-likelihood conditional expectation.
The EM algorithm for this example has a very appealing interpretation. Had

we observed x, then the maximum likelihood estimate of the group probability
πg would be the number of times xn equals g divided by the total number of
observations. The EM algorithm follows a very similar procedure. The next
estimate of the group probability πk+1

g is the expected number of times that xn

equals g conditioned on y and the previous estimate θk divided by the total
number of observations, i.e.

πk+1
g = ( Avg. # of times xn = g given y and θk)/N. (23)

4 Alternating Minimization

As mentioned previously, the EM algorithm belongs to class of alternating min-
imization procedures that have a nice geometric interpretation. We will now
summarize the main results of [6], and then show their relationship to the EM
algorithm.

Let P and Q be two elements from arbitrary sets P and Q, respectively.
Define an arbitrary “distance” function1 d(P,Q) that maps elements of P and
Q to the extended real numbers.

We say that the sequences {Pk}
∞
k=0

and {Qk}
∞
k=0

are obtained by alternating
minimization if for k = 0, 1, 2, . . .

Pk+1 = argmin
P∈P

d(P,Qk), (24)

Qk+1 = argmin
Q∈Q

d(Pk+1, Q), (25)

with the iterations starting at Q0 = argminQ∈Q d(P0, Q), and the starting point
P0 arbitrary. We can describe an alternating minimization sequence using the
notation P0 → Q0 → P1 → Q1 → · · · .

The main theorem (Th. 3) of [6] proves that if P and Q are convex measures
(not necessarily probability measures) and d(P,Q) = D(P‖Q) is the KL infor-
mational divergence, then all alternating minimization divergences converge.
Furthermore, they converge monotonically to a global minimum.

The proof of the theorems in [6] are very general, developing the geomet-
ric properties of P,Q, and d necessary for convergence. The KL informational
divergence happens to satisfy these properties over convex sets of measures. An-
other example that satisfies the geometric properties necessary for convergence
is that of closed, convex sets from a Hilbert space with d as the induced norm.
This example of projection onto convex sets is illustrated in Fig. 3.

1The function d is not a true “distance” because it can be negative and asymmetric. Yet,

it is intuitive to still think of it as measuring the “distance” between elements of P and Q.
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Figure 3: Alternating minimization iterates between finding the minimum of
d(P,Q) holding Q fixed, and the minimum holding P fixed, i.e. P0 → Q0 →
P1 → Q1 → · · · .

5 Relationship Between Alternating Minimiza-
tion Algorithms

We will now examine the relationship between the EM, Arimoto-Blahut, and a
best constant rebalanced portfolio algorithm as alternating minimization pro-
cedures. As mentioned previously, the EM is an alternating minimization al-
gorithm that minimizes D[ p ‖ q(θ) ]. If q(θ) forms a convex set, then the EM
algorithm will converge to a global minimum.

The algorithm to find the best constant rebalanced portfolio for a sequence
of stock returns is just the mixture problem with hg(yn) replaced by the return
of stock g at time n, and the group probabilities with the portfolio weights.
This best constant balanced portfolio is the target portfolio in Cover’s universal
portfolio algorithm [5].

The Arimoto-Blahut algorithm to calculate discrete memoryless channel ca-
pacity minimizes D[ p(θ) ‖ q(φ) ], where p(θ) = h( y | x )θ(x) and q(φ) = h( y |
x )φ(x | y ). Here, θ(x) is the density over the channel inputs, h( y | x ) is
the channel matrix relating inputs x to outputs y, and φ(x | y ) is an arbi-
trary stochastic matrix. Because p(θ) and q(φ) form convex sets parameterized
by θ and φ, respectively, the Arimoto-Blahut algorithm converges to a global
minimum.
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6 Conclusions

The EM algorithm is an alternating minimization algorithm that iterates be-
tween finding a greatest lower bound to the log-likelihood function and maxi-
mizing this bound. The EM algorithm converges when the observed and hidden
variable joint density form a convex set over the allowable parameters. Other
alternating minimization algorithms include the Arimoto-Blahut algorithm for
calculating channel capacity and rate-distortion functions, and some optimal
portfolio algorithms.
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