Tutorial on Factor Graph and Belief Propagation

References:

Factor Graphs and the Sum-Product Algorithm
by Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger, IT Trans. Feb. 2001

Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
by Jonathan S. Yedidia, Wiliam T. Freeman, and Yair Weiss

Marginal Functions

$$
g_{i}\left(x_{i}\right)=\sum_{x_{i}} g\left(x_{1}, \ldots, x_{n}\right)
$$

Example:

posteriori probability distribution $p(\mathbf{x} \mid \mathbf{y})$:

$$
g\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}, \ldots, x_{n} \mid \mathbf{y}\right)
$$

likelihood function

$$
g\left(x_{1}, \ldots, x_{n}\right)=p\left(\mathbf{y} \mid x_{1}, \ldots, x_{n}\right)
$$

Marginalize: estimate individual symbols.

Factor Graph

Consider the class of functions

$$
g\left(x_{1}, \ldots, x_{n}\right)=\prod_{j \in J} f_{j}\left(X_{j}\right)
$$

Example:

$$
g\left(x_{1}, \ldots, x_{5}\right)=f_{A}\left(x_{1}\right) f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right) f_{D}\left(x_{3}, x_{4}\right) f_{E}\left(x_{3}, x_{5}\right)
$$

Example: Linear Codes

Example: Linear Codes, Tanner Graph

Parity check matrix

$$
H=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

Code C is the set of \mathbf{x} such that $H \mathbf{x}=0$, it's characteristic function is:

$$
\begin{aligned}
\chi_{C}\left(x_{1}, \ldots, x_{6}\right) & \triangleq 1_{\left[\left(x_{1}, \ldots, x_{6}\right) \in C\right]} \\
& \left.=\prod_{j} 1_{\left[j^{t h}\right.} \text { parity check is satisfied }\right]
\end{aligned}
$$

Linear Codes, Noisy Observations

posteriori distribution

$$
p(\mathbf{x} \mid \mathbf{y}) \triangleq g(\mathbf{x}) \propto f(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})
$$

Assuming a memoryless channel, and equally likely codewords

$$
g(\mathbf{x})=\frac{1}{C} \chi_{C}(\mathbf{x}) \prod_{i=1}^{n} f\left(y_{i} \mid x_{i}\right)
$$

Example: Kalman Filter

$$
\begin{aligned}
x_{j+1} & =A_{j} x_{j}+B_{j} u_{j} \\
y_{j} & =C_{j} x_{j}+D_{j} w_{j}
\end{aligned}
$$

Consider

$$
\begin{aligned}
g\left(x_{1}, \ldots, x_{n}\right) & =f\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{n}\right) \\
& \propto \prod_{j=1}^{n} f\left(x_{j} \mid x_{j-1}\right) f\left(y_{j} \mid x_{j}\right)
\end{aligned}
$$

Marginalize:

$$
g_{n}\left(x_{n}\right)=f\left(x_{n} \mid y_{1}, \ldots, y_{n}\right)
$$

gives the MMSE of x_{n} and the estimation error distribution.

Example: Kalman Filter

Factor Graph for Kalman Filtering:

Factor Graph and Expression Tree

Idea: sum over one variable at a time.

Example:

$$
g\left(x_{1}, \ldots, x_{5}\right)=f_{A}\left(x_{1}\right) f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right) f_{D}\left(x_{3}, x_{4}\right) f_{E}\left(x_{3}, x_{5}\right)
$$

Factor Graph and Expression Tree

- Each factor node sums over all the variables that are its children, since they are not related to any other function

$$
m_{a \rightarrow i}=\sum_{\mathbf{x}_{a} / x_{i}} f_{a}\left(\mathbf{x}_{a}\right) \prod_{j \in N(a) / i} n_{j \rightarrow a}\left(x_{j}\right)
$$

- Each variable node combines all its children factors

$$
n_{i \rightarrow a}\left(x_{i}\right)=\prod_{b \in N(i) / a} m_{b \rightarrow i}\left(x_{i}\right)
$$

Belief Propagation

At a variable node, belief

$$
b_{i}\left(x_{i}\right) \propto \prod_{a \in N(i)} m_{a \rightarrow i}\left(x_{i}\right)
$$

Approximation to the exact marginal distribution $p_{i}\left(x_{i}\right)$.
At a variable node, belief

$$
b_{a}\left(\mathbf{x}_{a}\right) \propto f_{a}\left(\mathbf{x}_{a}\right) \prod_{i \in N(a)} n_{i \rightarrow a}\left(x_{i}\right)
$$

Approximation of the joint distribution of \mathbf{x}_{a}.
Marginalize:

$$
b_{i}\left(x_{i}\right)=\sum_{\mathbf{x}_{a} / x_{i}} b_{a}\left(\mathbf{x}_{a}\right)
$$

Example: parity check node

$$
\sum_{x_{1}, x_{2}} f_{a}\left(x_{3}=0, x_{1}, x_{2}\right) p\left(x_{1}, x_{2}\right)=P\left(x_{1}+x_{2}=0\right)
$$

Message transmitted in and out a variable node i is an approximate of the marginal distribution of x_{i}.

Example: Kalman Filtering

$$
\begin{aligned}
x_{j+1} & =A_{j} x_{j}+B_{j} u_{j} \\
y_{j} & =C_{j} x_{j}+D_{j} w_{j}
\end{aligned}
$$

Goal: forward estimation

$$
\begin{aligned}
P_{n \mid n}\left(x_{n}\right) & =f\left(x_{n} \mid y_{1}, \ldots, y_{n}\right) \\
& =\int_{\sim\left\{x_{n}\right\}} f\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{n}\right) d\left(\sim\left\{x_{n}\right\}\right)
\end{aligned}
$$

Example: Kalman Filtering

Update rule:

$$
P_{j \mid j}\left(x_{j}\right)=P_{j \mid j-1}\left(x_{j}\right) f\left(y_{j} \mid x_{j}\right) \propto \mathcal{N}\left(\hat{m}_{j \mid j}, \sigma_{j \mid j}^{2}\right)
$$

estimate of x_{j} based on observations y_{1}, \ldots, y_{j}.

$$
P_{j+1 \mid j}\left(x_{j+1}\right)=\int P_{j \mid j}\left(x_{j}\right) \mathcal{N}\left(A_{j} x_{j}, B_{j}^{2}\right) d x_{j} \propto \mathcal{N}\left(\hat{m}_{j+1 \mid j}, \sigma_{j+1 \mid j}^{2}\right)
$$

estimate of x_{j+1} based on observations y_{1}, \ldots, y_{j}.

Computing All Marginal Functions

Each node sends message on an edge only when it has received messages from all other edges.

Example: Kalman Filter (again)

Factor Graphs with Cycles

Iterative Processing

- LDPC codes
- RA codes
- ...

Message-passing Schedules

- flooding
- serial

Free Energy

For a factor graph probability distribution

$$
p(\mathbf{x})=\frac{1}{Z} \prod_{a=1}^{M} f_{a}\left(\mathbf{x}_{a}\right)
$$

define the energy of a state as

$$
E(\mathbf{x})=-\sum_{i=1}^{M} \log f_{a}\left(\mathbf{x}_{a}\right)
$$

Helmholtz free energy

$$
F_{\text {helmholtz }}=-\log Z
$$

Given $E(\mathbf{x})$, can integral to compute Z and $p(\mathbf{x})$, but it is hard.

Free Energy

Gibbs free energy: for another distribution $b(\mathbf{x})$,

$$
\begin{aligned}
F(b) & =U(b)-H(b) \\
& =\sum b(\mathbf{x}) E(\mathbf{x})+\sum b(\mathbf{x}) \log b(\mathbf{x}) \\
& =F_{\text {helmholtz }}+D(b \| p)
\end{aligned}
$$

Minimize Gibbs free energy: compute Z and recover p : still hard. Restrict $b(\mathbf{x})=\prod_{i} b_{i}\left(x_{i}\right)$, minimize mean field free energy to have an approximation of $p(\mathbf{x})$.

Region-based Free Energy Approximation

Region energy

$$
E_{R}\left(\mathbf{x}_{R}\right)=-\sum_{a \in F_{R}} \log f_{a}\left(\mathbf{x}_{a}\right)
$$

Region belief $b_{R}\left(\mathbf{x}_{R}\right)$ is an approximation of $p_{R}\left(\mathbf{x}_{R}\right)$.
Minimize

$$
F_{R}\left(b_{R}\right)=U_{R}\left(b_{R}\right)-H_{R}\left(b_{R}\right)
$$

gives an approximation of the original distribution.
Problem: overlap and over counting.
Solution: introduce counting number.

Bethe Method

Bethe method: a special method of defining the regions and the counting numbers.

Fixed points of the BP algorithm correspond to stationary points of the Bethe approximation of the free energy.

- BP always have a fixed point
- Uniqueness of the stationary points is studied in physics.
- BP does not decrease Bethe free energy at each iteration.
- Generalized BP.

