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On a Relation Between Information Inequalities and
Group Theory

Terence H. Chan, Member, IEEE,and Raymond W. Yeung, Senior Member, IEEE

Abstract—In this paper, we establish a one-to-one correspon-
dence between information inequalities and group inequalities. The
major implication of our result is that we can prove information
inequalities by proving the corresponding group inequalities, and
vice versa. By giving a group-theoretic proof for all Shannon-type
inequalities, we suggest that new inequalities could be discovered
by making use of the rich set of tools in group theory. On the other
hand, via a non-Shannon-type information inequality recently dis-
covered by Zhang and Yeung, we obtain a new inequality in group
theory whose meaning is yet to be understood.

Index Terms—Entropy, groups, group-theoretic inequalities, in-
formation inequalities.

I. INTRODUCTION

T HE quest for inequalities in information theory has been
driven by the need to solve various communication prob-

lems. These inequalities play a crucial role in the proofs of al-
most all converse coding theorems in source and channel coding
problems. In essence, they govern the impossibility in informa-
tion theory.

The focus of this paper is inequalities which involve only
Shannon’s information measures, namely, entropies, mutual in-
formation, and conditional versions of these information mea-
sures. We refer to inequalities involving only Shannon’s infor-
mation measures as information inequalities. All the random
variables involved are discrete. In [6], these inequalities are re-
ferred to as “the laws of information theory.”

The main contribution of this paper is a group-theoretical
interpretation of information inequalities. With this interpreta-
tion, we can translate the problem of proving an information
inequality to a group-theoretical problem. It opens the door to
discovering and proving new information inequalities by means
of tools in group theory.

II. A FRAMEWORK FORINFORMATION INEQUALITIES

Let and be nonempty
sets. Let be the collection of all nonempty subsets of. For
any , we define to be the Cartesian
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product of for . Let be jointly dis-
tributed discrete random variables defined on ,
respectively. For any , denotes the joint random vari-
able . For example, is the joint random vari-
able of and . For simplicity, the parentheses in the sub-
script are usually omitted, i.e., is written as . Also,
the joint entropy of is denoted by .

Let be the set of all real functions defined on. In other
words, is the set of all real functions defined on the col-
lection of nonempty subsets of and, hence, is a -di-
mensional Euclidean space [10]. For simplicity, for any function

, the function value is denoted by for all .

Definition 2.1: Let . Then is an entropy function
if there exists a set of random variables such
that for all .

Every linear information inequality
corresponds to a linear inequality in , where

is a column vector whose components are in-
dexed by and . Hence, for sim-
plicity, an information inequality will usually be written in the
form .

Let [10] be the set of all entropy functions. This set plays
an important role in information theory (see Theorem 2.1). It is a
subset of and it has a very complex structure. For , it is
not even closed [11]. It was proved in [11] that, the closure of

, is a closed convex cone. Thus, is much more manageable
than , and for many applications, it is sufficient to consider

.

Theorem 2.1 [10]: An information inequality

is valid if and only if for all , .

Theorem 2.1 has the following important consequence. Since
is closed and convex, an information

inequality is valid if and only if for all
, . In other words, the validity of an informa-

tion inequality depends only on (or simply ) and
. Thus, if (or ) has an explicit charac-

terization, then the information inequality can be proved or dis-
proved by comparing the two corresponding regions. Hence, the
study of the underlying structure of (and ) is fundamental
in information theory. Although it is proved that is a closed
convex cone, is not yet fully characterized for [12].
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III. GROUP-CHARACTERIZABLE ENTROPYFUNCTIONS

Recall that the region consists of all the entropy functions
in for random variables. As a first step toward establishing
the relation between entropy and groups, we discuss in this sec-
tion entropy functions in which can be described by a finite
group and subgroups . Such entropy func-
tions are said to begroup-characterizable.For simplicity, all the
groups in this paper are finite.

Let and be subgroups of a finite group
. The intersection of the subgroups, also a subgroup of,

is denoted by . Let be the left cosets of in . By
Lagrange’s theorem, the left cosets of in partition into

subsets, each of which is of size equal to .
Suppose we have a collection of left cosets for . If

is nonempty, say , then

(1)

(2)

where the last step is easy to verify. Thus, the intersection
is either empty or is of size .

Given subgroups of a group , let
be defined by for all nonempty subsets of .
Then is called group-characterizable by .

Theorem 3.1:If is group-characterizable, then it is an en-
tropy function, i.e., .

Proof: Let be a discrete random variable defined on the
sample space with uniform distribution. For any , let
random variable be a function of such that if

. Let be a nonempty subset of . Then

Pr (3)

if

otherwise.
(4)

Thus, it is trivial to see that the entropy of is
. Hence, is an entropy function.

Example 3.1:Fix any nonempty subset of
, and define a vector as follows:

if

otherwise.
(5)

Then is a group characterization of,
where is the group of modulo addition, if ,
and otherwise. By letting , we have for
all . Thus, we see that is a group
characterization of the origin of , with .

Example 3.2:Let be the following matrix

(6)

For any nonempty subsetof , is the submatrix of
by extracting the rows of indexed by . For ,

is the th column of the submatrix .
Let be the group of all permutations on ,
be the subgroup of such that

(7)

for all and . Since , it can be
checked easily that is the subgroup of such that

(8)
It can be checked easily that is a subgroup of of order

, is a subgroup of of order , and is a subgroup
of of order . Then we can construct a group charac-
terizable function defined by

(9)

IV. A GROUPCHARACTERIZATION OF

Since all function values of group-characterizable functions
are rational, there are only countably infinitely many group-
characterizable functions. However, in general, there are un-
countably infinitely many entropy functions. Hence, the number
of group-characterizable functions are substantially less than the
number of entropy functions. Although the number of group-
characterizable functions is comparatively small, it turns out
that the set of all group-characterizable functions is almost good
enough to characterize the region, as we will see next.

Definition 4.1: Define the following region in :

is group-characterizable (10)

By Theorem 3.1, if is group-characterizable, then .
This implies that . We will prove as a corollary of the
next theorem that , the convex closure of , is in fact
equal to , the closure of .

Theorem 4.1:For any , there exists a sequence
in such that .

We need the following lemma to prove this theorem. The
proof of the following lemma can be found in [3, p. 282].

Lemma 4.1:Let be a random variable with finite sample
space and its probability distribution be rational (i.e.,

is a rational number for all ). Without loss of gener-
ality, assume is a rational number with denominatorfor
all . Then for

(11)
Hence, as a corollary

(12)
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Proof of Theorem 4.1:For any , there exists a
collection of random variables such that

(13)

for all nonempty subsets of . We first consider the special
case that for all and the joint distribution of

is rational. We want to show that there exists
a sequence in such that .

For any , let be the marginal distribution of .
Assume without loss of generality that for any nonempty subset

of and for all , is a rational number with
denominator .

For each fix an matrix

...
...

... (14)

such that for all , the number of columns in
being is . The existence of such a matrix

is guaranteed by all the values of the joint distribution of
being rational numbers with denominator.

For any nonempty subset of , is the sub-
matrix of obtained by extracting the rows of indexed by

. For , is the th column of the subma-
trix . It is easy to prove that for all , the
number of columns in being the transpose of
is , where is the marginal distribution of
random variables for .

Let be the group of all permutations on .
The group depends on , but in order to keep the notation
simple, we do not state this dependency explicitly. For any

, let be the subgroup of such that

(15)

for all and . Since , it can
be checked easily that is the subgroup of such that

(16)

Since for all , the number of columns in
being is , it can be checked easily
that . By Lemma 4.1

(17)

Let be defined by

(18)

for all . Then by construction, and hence,

(19)

In general, for any , we can construct a sequence
in such that , where is the entropy
function of a collection of random variables with
finite sample space and a rational joint probability distribution.
This completes the proof of the theorem.

Corollory 4.1:
Proof: First of all, . By taking convex closure,

we have . Since is convex,
, and we have . On the other hand, we have

shown in Example 3.1 that the origin of has a group char-
acterization and therefore is in . It then follows from The-
orem 4.1 that . Hence, we conclude that

, completing the proof.

V. INFORMATION INEQUALITIES AND GROUPINEQUALITIES

As we have discussed in Section II, a linear information in-
equality

(20)

always holds if and only if

(21)

In other words, all linear information inequalities are fully char-
acterized by . We also have proved at the end of the last sec-
tion that . Since , if (21) holds,
then

(22)

On the other hand, since is close and
convex, by taking convex closure in (22), we obtain

(23)

Therefore, (21) and (22) are equivalent.
For each

(24)

for all nonempty subset of for some finite group
and subgroups . Hence, the information
inequality holds for all random vari-
ables if and only if the corresponding group
inequality

(25)

holds for all finite group and subgroups .
In other words, for every linear information inequality, there
is a corresponding group inequality in the form as in (25), and
vice versa. Therefore, inequalities in information theory can be
proved by methods in group theory, and inequalities in group
theory can be proved by methods in information theory.

Example 5.1:Let and be subgroups of a finite group
with group operation . Define

and (26)

It is easy to prove that . As a corollary

(27)

(28)
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Since is a subset of

(29)

Rearranging the terms, we obtain

(30)

This group inequality corresponds to the information inequality

(31)

Hence,

or, equivalently, , is a valid information in-
equality for all random variables .

The above example shows how an information inequality
can be proved by methods in group theory. In fact, all so-called
Shannon-type inequalities are consequences of the nonnega-
tivity of conditional mutual information [10]. Therefore, all
Shannon-type inequalities can be proved by methods in group
theory.

On the other hand, information inequalities can also give rise
to new inequalities in group theory by virtue of our result. This
is discussed in the next example.

Example 5.2:Recently, the following highly nontrivial in-
formation inequality, which cannot be deduced by directly in-
voking the basic Shannon inequalities, has been proved in [12]:

(32)

This information inequality corresponds to the group inequality

(33)

Upon rearranging the terms, we obtain

(34)

The meaning of this inequality and its implications in group
theory are yet to be understood.

VI. CONCLUSION

Information inequalities play a crucial role in the proofs of al-
most all converse coding theorems in source and channel coding
problems. In essence, they govern the impossibility in informa-
tion theory. However, due to lack of tools, to find new informa-
tion inequalities is an extremely difficult task. In this paper, we
have identified a class of group-characterizable entropy func-
tions. The correspondence between group-characterizable en-
tropy functions and their group characterizations provides an
algebraic approach to proving information inequalities andvice
versa. Since group theory is a well-studied branch in mathe-
matics, it may be possible that we can use some existing results
in this field to attack the corresponding problem in information
theory.
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