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On a Relation Between Information Inequalities and
Group Theory

Terence H. ChgrMember, IEEEand Raymond W. Yeundsenior Member, IEEE

Abstract—in this paper, we establish a one-to-one correspon- product ofX; fori € a. Let X1, X5, ..., X,, ben jointly dis-
dence betweeninformationinequalities and group inequalities. The triputed discrete random variables definedtn As, ..., X,

major implication of our result is that we can prove information respectively. For any € 2, X, denotes the joint random vari-
inequalities by proving the corresponding group inequalities, and ) A

vice versaBy giving a group-theoretic proof for all Shannon-type  able(Xi: ¢ € a). For exar_ane_X_{L 2y Is the joint randpm vari-
inequalities, we suggest that new inequalities could be discoveredable of X; and X,. For simplicity, the parentheses in the sub-
by making use of the rich set of tools in group theory. On the other script are usually omitted, i_eX{L 2} is written aSXI, 5. Also,
hand, via a non-Shannon-type information inequality recently dis- o joint entropy ofX,, is denoted by (X.,).
covered by Zhang and Yeung, we obtain a new inequality in group LetH. be th t of all | functi defined B In oth
theory whose meaning is yet to be understood. eltin ? e setofallrealiunc |0r15 e |n§ 11n other
- o words, H,, is the set of all real functions defined on the col-
Index Terms—Entropy, groups, group-theoretic inequalities, in- . . .
formation inequalities. lection of nonempty subsets &f and, hence, is &2" — 1)-di-
mensional Euclidean space [10]. For simplicity, for any function

g € H,, the function valug(«) is denoted by, for all & € 2.
|. INTRODUCTION

Definition 2.1: Letg € H,,. Theng is an entropy function

HE quest for inequalities in information theory has beeﬁthere exists a set of random variabl&s. X, ..., X, such
driven by the need to solve various communication protqaatg — H(X.)foralla € © ey
Q. T @ .

lems. These inequalities play a crucial role in the proofs of al-
most all converse coding theorems in source and channel codingvery linear information inequality ., bo H(Xs) > 0
problems. In essence, they govern the impossibility in informaerresponds to a linear inequaldy k > 0 in H,,, whereb =
tion theory. [ba, @ € QT is a column vector whose components are in-
The focus of this paper is inequalities which involve onlgexed bya € Q andh = [H(X,,), « € Q]". Hence, for sim-
Shannon’s information measures, namely, entropies, mutual gikcity, an information inequality will usually be written in the
formation, and conditional versions of these information megyrm "4 > 0.
sures. We refer to inequalities involving only Shannon’s infor- | et [10] be the set of all entropy functions. This set plays
mation measures as m_formatlon mequalltle_s. Al th_e randogh important role in information theory (see Theorem 2.1). Itis a
variables involved are discrete. In [6], these inequalities are 1pset of¢,, and it has a very complex structure. Fob 3, itis
ferred to as “the laws of information theory.” _ noteven closed [11]. It was proved in [11] tti3}, the closure of
The main contribution of this paper is a group—theoreucqx{:' is a closed convex cone. Thiig, is much more manageable

interpretation of information inequalities. With this interpretag,anr*  and for many applications, it is sufficient to consider
tion, we can translate the problem of proving an informatiop* "

inequality to a group-theoretical problem. It opens the door ta"
discovering and proving new information inequalities by means Theorem 2.1 [10]: An information inequality
of tools in group theory.
> boH(Xa) 20
Il. A FRAMEWORK FORINFORMATION INEQUALITIES v

LetN = {1,...,n} and Xy, &s, ..., X, ben nonempty o ] T
sets. Let2 be the collection of all nonempty subsets'éf For 1S Validif and only if for allh € I, " h > 0.
anya € , we definex, = ][, A; to be the Cartesian  Theorem 2.1 has the following important consequence. Since

{h € H,.: b'h > 0} is closed and convex, an information
Manuscript received April 14, 1999; revised December 4, 2001. The woiRequalityy - ., b H(X,) > 0is valid if and only if for all

of T. H. Chan was supported in part by The Chinese University of Hong Ko ™ b h > idi ; _
Postgraduate Student Grants for Overseas Academic Activities. W e Ly b h = 0.In other words, the validity of an informa

. . 2T . —
T. H. Chan was with the Department of Information Engineering, The Chinel@n inequalityb " A > 0 depends Onﬂfk()ﬁ:, (orsimply[’,) and
University of Hong Kong, Shatin, N.T., Hong Kong. He is now with the Depart{h, € H,: b h > ()}_ Thus, ifl% (orL',) has an explicit charac-

ment of Electrical and Computer Engineering, University of Toronto, TorontQ,. ,:_, -+ . L . o
ON M5S 3G4, Canada (e-mail: terence@comm.utoronto.ca). ferization, then the information inequality can be proved or dis

R. W. Yeung is with the Department of Information Engineering, The Chproved by comparing the two corr68p0nd[1*g regions. Hence, the
nese Ugivﬁflgity of Hong Kong, Shatin, N.T., Hong Kong (e-mail: whyeung@igtudy of the underlying structure bf, (andr",,) is fundamental
cuhk.edu. . . . o —k .

Communicated by I. Csiszér, Associate Editor for Shannon Theory. in information theory. Although it is proved th&, is a closed

Publisher Item Identifier S 0018-9448(02)05174-X. convex conel’,, is not yet fully characterized for > 3 [12].

0018-9448/02$17.00 © 2002 IEEE



CHAN AND YEUNG: ON A RELATION BETWEEN INFORMATION INEQUALITIES AND GROUP THEORY

I1l. GROUP-CHARACTERIZABLE ENTROPY FUNCTIONS

Recall that the regioh}, consists of all the entropy functions
in H,, for n random variables. As a first step toward establishi
the relation between entropy and groups, we discuss in this sgp—
tion entropy functions i}, which can be described by a finite ™"
., Gy. Such entropy func-

group & and subgroup§sy, G, ..
tions are said to bgroup-characterizable-or simplicity, all the
groups in this paper are finite.

1993

For any nonempty subsatof {1, 2}, 2, is the submatrix o

by extracting the rows at indexed bya. Forj = 1, ..., 6,
_; is thejth column of the submatrix.,,.

Let G be the group of all permutations 4#, 2, 3, 4, 5, 6},

be the subgroup aff such that

(1)
forall o € G; andé = 1, 2. SinceGy 2 = G1[)Ge, it can be

olx:] = [T 01)) Ti,0(2)s - Ti,o6)] = Fi

Leta € Q andG;, i € « be subgroups of a finite group checked easily tha®; » is the subgroup off such that

G. The intersection of the subgroups, also a subgrougrof

is denoted by7,,. Let aF, be the left cosets off, in G. By
Lagrange’s theorem, the left cosets@f in G partition G into
% subsets, each of which is of size equal@,|.

Suppose we have a collection of left coset§; fori € «. If

Mica @G is nonempty, say € N, ., @:G:, then

ALY

[ASTeY Ca

=b() G

1€

1)

)

where the last step is easy to verify. Thus, the intersection

(Nica @G is either empty or is of sizf7,|.
Given subgroupé/y, G, ..., G, ofagroupG, leth € H,
be defined byh,, = log 51 for all nonempty subsets of V.

[Gal
Thenh is called group-characterizable b§#, G4, ..., G,).

Theorem 3.1:If h is group-characterizable, then it is an en-

tropy function, i.e.h € T'%.

Proof: Let A be a discrete random variable defined on th

sample spacé& with uniform distribution. For any € N, let
random variableX; be a function ofA such thatX; = oG, if
A = a. Let o be a nonempty subset &f. Then

ica @iGi
Pr(X7 =q,G;i1 € Oé) = 7| ﬂz€|océ;|L |

|G(\|
S el
0,

Thus, it is trivial to see that the entropy 6K, ¢ € «) is
<]

log 1G] = he. Hence h is an entropy function.

®3)

if Nica @iGi 0
otherwise.

(4)

Example 3.1:Fix any nonempty subsefs of A/ =
{1, 2, ..., n}, and define a vectdt € H,, as follows:

L
h = {
0

Then (G, G1, Gs, ..., G,) is a group characterization df,
whered is the group of modul@ addition,G; = {0} if ¢ € 3,
andG; = G otherwise. By letting? = (), we haveh, = 0 for
all o € Q. Thus, we see that7, Gy, G», ..., G,,) isagroup
characterization of the origin 6{,,, withG = G, = --- = G,,.

ifang#£0
otherwise.

(®)

Example 3.2: Let z be the following2 x 6 matrix

[a, a, a, b, b, b}
z = .

c, ¢, d,c, e d

(6)

. x{172}70(7,)] =&, 2.
®)

It can be checked easily th&t; is a subgroup of7 of order
3!3!, G4 is a subgroup ofs of order4!2!, and(:; » is a subgroup
of G of order2!1!2!1!. Then we can construct a group charac-
terizable functionh defined by

6! 6! 6!
sz e=lesggn M2 =leegmEey

©)

0[-'1’?1,2] = [35{1,2},0(1)7 L{1,2},0(2)5 ++

h1 =log

IV. A GROUP CHARACTERIZATION OF FZ

Since all function values of group-characterizable functions
are rational, there are only countably infinitely many group-
characterizable functions. However, in general, there are un-
countably infinitely many entropy functions. Hence, the number
of group-characterizable functions are substantially less than the
number of entropy functions. Although the number of group-
characterizable functions is comparatively small, it turns out
fhat the set of all group-characterizable functions is almost good
enough to characterize the regibf), as we will see next.

Definition 4.1: Define the following region ir¥,,:

Y, = {h € H,: his group-characterizabje  (10)
By Theorem 3.1, ifa is group-characterizable, théne I'%.
This implies thatl',, C I'};. We will prove as a corollary of the
next thegrem thaton(Y,,), the convex closure df ,,, is in fact

equal tol’,,, the closure of**.

Theorem 4.1:Foranyh € I'%, there exists a sequengg™ }
in Y, such thaflim, . 1 £ = h.

We need the following lemma to prove this theorem. The
proof of the following lemma can be found in [3, p. 282].

Lemma 4.1:Let X be a random variable with finite sample
spaceX and its probability distribution(x) be rational (i.e.,
p(x) is arational number for alt € &). Without loss of gener-
ality, assumep(z) is a rational number with denominatgrfor
all z € X. Then forr = ¢, 2¢q, 3¢, ...

log(r+1) 1 7!
HX) — X2 T < Clog - < H(X).
: r 7 Haen(rp(@))! )
Hence, as a corollary
-1
lim ! log L H(X). (12)
roeor [ (rp(a))!
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Proof of Theorem 4.1:For anyh € I'*, there exists a  Corollory 4.1: con(Y,) =T,
collection of random variableX, X5, ..., X, such that Proof: First of all, T,, C I'%. By taking convex closure,
he = H(X.) (13) we haveton(Y,,) C m(l“;)._s*incefz is convexgcon(l) =
o ¢ I',,, and we haveon(Y,,) C I',,. On the other hand, we have
for all nonempty subsets of A/. We first consider the special shown in Example 3.1 that the origin &f,, has a group char-
case that;| < oo for all ¢ € A and the joint distribution of acterization and therefore is M, It then follows from The-
X1, Xo, ..., X, is rational. We want to show that there existorem 4.1 thal",,  con(Y,,). Hence, we conclude that, =
a sequencéf(”)} in T,, such thatim, . %f(”) =h. con(T,), completing the proof. O
For anya € €2, let Q, be the marginal distribution ok,
Assume without loss of generality that for any nonempty subset. INFORMATION INEQUALITIES AND GROUP INEQUALITIES
a of N and for alla € X, Q,(a) is a rational number with

. As we have discussed in Section I, a linear information in-
denominatos.

For eachr = ¢, 2¢, 3q, ..., fixann x r matrixz equality
211 . b'h>0 (20)
x= : : (14) always holds if and only if
Ta1 o T I, c{heH,b h>0h (21)
such thatfor allas, ..., a,) € X, the number of columns in In other words, all linear information inequalities are fully char-

z being[ay . .. a,]T isrQx(a). The existence of such a matrixacterized byl',,. We also have proved at the end of the last sec-
is guaranteed by all the values of the joint distribution’@§ tion thatcon(Y,) = I',,. SinceY,, C I'* C I, if (21) holds,

being rational numbers with denominator then

For any nonempty subset of {1, ..., n}, 2, is the sub- -
matrix of z obtained by extracting the rows af indexed by Tn C{heHn:b h=0}. (22)
a. Forj = 1,..., 7, zq ; is the jth column of the subma- 5, ihe other hand, sincgh € #,: b'h > 0} is close and

trix z,,. It is easy to prove that for alle;: ¢ € «) € X,, the
number of columns irx,, being the transpose ¢&;: ¢ € «) .
is 7Q4(a;: i € «), whereQ,, is the marginal distribution of T, =con(Y,) C {h€H,:b h>o0} (23)
random variables\; for i € «.

Let G be the group of all permutations oft, ..., »}.
The groupG depends onr, but in order to keep the notation

convex, by taking convex closure in (22), we obtain

Therefore, (21) and (22) are equivalent.
For eachh € T,

simple, we do not state this dependency explicitly. For any h, = log ] (24)
1€ {1, ..., n}, letG; be the subgroup off such that |Gl
_ _ for all nonempty subsetv of A' for some finite groupG
il = %6, 0(1)) Ti,02)s -5 Ti, ()] = Ei 15 ; .
olz] =i 00) 200 Tion)] =2 (15) and subgroupsGy, Go, ..., G,. Hence, the information
forallo € G;andi =1, ..., n. SinceGo =, Gi, itcan inequality}",,, baH(X,) > 0 holds for all random vari-
be checked easily that,, is the subgroup ofr such that ablesX;, Xs, ..., X,, if and only if the corresponding group
O'[ﬁa] = [xa,o(l)v xa,o’(?)v R xa,o’(?’)] =Zu- (16) Inequallty
Since for all(a;: ¢ € «) € X, the number of columns i, Z bo log |G >0 (25)
being[a;: i € o] isrQ.(a;: i € ), it can be checked easily ach |Gal
= - (r L . -
that|Ga| = Ilacx, (r@a(a))!. By Lemma 4.1 holds for all finite groupG and subgroup&y, G, ..., G,..
1o G . In other words, for every linear information inequality, there
rlggo r log |Gl H(Xa) = ha- (17) is a corresponding group inequality in the form as in (25), and
™) pe defined b vice versaTherefore, inequalities in information theory can be
Let f € aefined by proved by methods in group theory, and inequalities in group
™) |G| theory can be proved by methods in information theory.
fo =log == (18)
|Gal Example 5.1: Let G; and@5 be subgroups of a finite group
for all « € Q. Thenf") € T, by construction, and hence, & With group operatior. Define
. GioGy = b: a € Gy andb € Go}. 26
I %f(’) _h (19) 10Gy={aob:ae G 2} (26)
e It is easy to prove thadt7; o G| = % As a corollary
In general, for anyr € I'}, we can construct a sequer{dék)} |G| G|
in " such thalimy_.. K% = h, whereh™ is the entropy |G13 0 Gas| = ﬁ (27)
function of a collection of random variablés,, ..., X,, with |G13 N Gs
finite sample space and a rational joint probability distribution. _ |G13]|Gas] (28)

This completes the proof of the theorem. O |G123]
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SinceGi3 o Ga3 is a subset ofis

|G13|| G2

G Gaz| =
| 130 23| |G123|

< |Gsl.

Rearranging the terms, we obtain

|G|
|G13]

i >10gﬁ + log <]

+ log >
® 1G] |Ga]

log

|G123| )

(29)

(30)

Upon rearranging the terms, we obtain

|G34]®|Gr3]*|Gral*|Gasl* | Goal*
< |G |Ga| |Gl |Gal | Gral*|Grza|’|Gasal®. (34)

The meaning of this inequality and its implications in group
theory are yet to be understood.

VI. CONCLUSION
Information inequalities play a crucial role in the proofs of al-

This group inequality corresponds to the information inequality, <t all converse coding theorems in source and channel coding

H(Xy, X3)+ H(X5, X3) > H(X3) + H(X;, X5, X3).

Hence,

(1)

H(X, X3)+ H(X,, X3) > H(X3) + H(Xy, Xo, X3)

or, equivalently,/ (X;; X3|X3) > 0, is a valid information in-

equality for all random variableX;, X5, X3.

The above example shows how an information inequality
can be proved by methods in group theory. In fact, all so-called

problems. In essence, they govern the impossibility in informa-
tion theory. However, due to lack of tools, to find new informa-
tion inequalities is an extremely difficult task. In this paper, we
have identified a class of group-characterizable entropy func-
tions. The correspondence between group-characterizable en-
tropy functions and their group characterizations provides an
algebraic approach to proving information inequalities aicd
versa Since group theory is a well-studied branch in mathe-
matics, it may be possible that we can use some existing results
in this field to attack the corresponding problem in information
theory.
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