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Space-Time Block Coding

To improve the performance of a wireless transmission system in which the channel quality fluc-

tuates, researchers suggested that the receiver be provided with multiple received signals generated

by the same underlying data. These suggestions are refered to as diversity which exists in different

forms including temporal diversity, frequency diversity, and antenna diversity.

Temporal diversity includes channel coding in conjunction with time interleaving which involve

redundancy in time domain. Frequency diversity refers to transmission on different frequencies

which provides redundancy in frequency domain. Antenna diversity can be viewed as redundancy

in spatial domain and implemented by using multiple antennae at both the transmit side (base

station) and the receive side (mobile units).

Space-time coding refers to channel coding techniques for transmission with multiple transmit

and receive antennae. This summary discusses the work in [TSC98] and [TJC99] which contribute

to understanding systems with multiple transmit antennae. The following parameters describe a

simple analytical model in [TSC98] and [TJC99] on which we shall concentrate.

• n: number of transmit antennae.

• m: number of receive antennae.

• αi,j : path gain from transmitter i to receiver, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Assume they are

independent and have Gaussian distribution with mean zero and variance 1/2 per (real)

dimension.

• l: length of block codes.

• cit: transmitted signal at time t by transmit antenna i, 1 ≤ t ≤ l, 1 ≤ i ≤ n.

• rjt : received signal at time t by receive antenna j, 1 ≤ t ≤ l, 1 ≤ j ≤ m.

• ηjt : additive white Gaussian noise with mean zero and variance 1/SNR per dimension.

We shall concentrate on the analysis based on the assumption of block fading and perfect channel

information, i.e. αi,j ’s are fixed throughout the block length l and are known to the receiver.
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A codeword c in a block code is described by a vector c = (c1
1, ..., c

1
l , c

2
1, ..., c

2
l , ..., c

n
1 , ..., c

n
l ). At

time t, the receiver obtains

rjt =
n∑
i=1

αi,jc
i
t + ηjt ,

and select the codeword that minimizes the distance

l∑
t=1

m∑
j=1

∣∣∣∣∣rjt −
n∑
i=1

αi,jc
i
t

∣∣∣∣∣
2

.

The pairwise probability of incorrectly decoding e when c is transmitted is denoted by P (c→ e).

Given a particular set of αi,j ’s, using the standard bound Q(x) ≤ exp(−x2/2),

P (c→ e|αi,j) ≤ exp[−d2(c, e)SNR/2], where

d2(c, e) =
m∑
j=1

l∑
t=1

∣∣∣∣∣
n∑
i=1

αi,jc
i
t −

n∑
i=1

αi,je
i
t

∣∣∣∣∣
2

.

Define Ωj = (αi,j , ..., αn,j) and Ai,i′ = (ci1− ei1, ..., cil − eil) · (ci
′

1 − ei
′

1 , ..., c
i′
l − ei

′
l ). Then it follows

that d2(c, e) =
∑m
j=1 ΩjAΩ∗j .

1

Let λ1, ..., λn denote (possibly zero) eigenvalues of A. Since A is Hermatian, λi’s are real and

nonnegative. Let r be the rank of A. By averaging the upper bound on P (c → e|αi,j) and with

some algebra,

P (c→ e) ≤
(

r∏
i=1

λi

)−m (
SNR

2

)−rm
.

The exponent rm is refered to as diversity advantage or diversity order, while the product

(
∏r
i=1 λi)

1/r is refered to as coding advantage. Define

B(c, e) =



e1
1 − c1

1 e1
2 − c1

2 · · · e1
l − c1

l

e2
1 − c2

1 e2
2 − c2

2 · · · e2
l − c2

l
...

...
...

en1 − cn1 en2 − cn2 · · · enl − cnl


.

It follows that B(c, e) is a square root matrix of A(c, e), i.e. A = BB∗, and their ranks are

equal. The above upper bound expression for P (c → e) gives rise to two criteria for space-time

coding.

1A∗ denotes the conjugate transpose of A.
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• The rank criterion: for maximum diversity order nm, B(c, e) has to be full rank for all pairs

of codewords c and e.

• The coding advantage criterion: given diversity order rm, try to maximize the minimum of

(
∏r
i=1 λi) over all pairs of codewords.

We shall concentrate on the rank criterion for space-time block code designs using results from

the subject of orthogonal designs.

Real Orthogonal Designs

A real orthogonal design of size n is an n × n orthogonal matrix whose rows are permutations of

real numbers ±x1, ...,±xn. Without loss of generality, the first row can be assigned as (x1, ..., xn).

For example, real orthogonal designs for n = 2 and n = 4 are

 x1 x2

−x2 x1

 ,


x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1

 .

The existence of real orthogonal designs for different values of n is known as the Hurwitz-Radon

problem in mathematics. It was shown that real orthogonal designs exist if and only if n = 2, 4, or

8.

A space-time block code based on real orthogonal designs of size n (n = 2, 4, or 8) can be

constructed as follow. The encoder takes in a block of nb bits. For each i, 1 ≤ i ≤ n, the encoder

select a symbol si from a real constellation A of size 2b. The encoder then use s1, ..., sn to build

an orthogonal matrix O(s1, ..., sn) based on real orthogonal designs of size n. At time t, the n

antennae transmit the tth row of O(s1, ..., sn).

Due to orthogonality, the diversity order of this code is nm. The rate of is code is b bits/s/Hz,

which is shown to be optimal under the diversity order nm for the constellation size 2b.

Orthogonality also simplifies the minimum-distance decoding rule. Let δk(i) be the sign of xi

in the kth row of O, and εk(p) be the column in row p where ±xk is. It follows that the receiver
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only needs to combine received signals linearly

Ri =
n∑
t=1

m∑
j=1

rjtαεt(i),jδt(i), 1 ≤ i ≤ n,

and decide on si such that

si = arg min
s∈A
|Ri − s|2 +

−1 +
∑
k,l

|αk.l|2
 |s|2.

However, real orthogonal designs only exist for n = 2, 4, or 8. By developing generalized real

orthogonal designs, space-time block codes for other numbers of antennae can be obtained.

Before discussing generalized real orthogonal designs, it is worth mentioning that a more imme-

diate generalization is linear processing orthogonal designs in which entries in orthogonal matrices

O(x1, ..., xn) are linear combinations of x1, ..., xn (instead of permutations of ±x1, ...,±xn as be-

fore). However, it is shown that allowing linear processing of x1, ..., xn does not increase the values

of n such that orthogonal designs exist.

Generalized Real Orthogonal Designs

A generalized real orthogonal design of size n is an p×n matrix G with entries 0,±x1, ...,±xk such

that G∗G = D, a p× p diagonal matrix whose ith diagonal entry is of the form li1x
2
1 + ...+ likx

2
k with

li1 = ... = lik being strictly positive integers. However, without loss of generality, one can assume

that G∗G = I(x2
1 + ...+ x2

k).

A space-time block code based on generalized real orthogonal designs of size n can be constructed

as follow. The encoder takes in a block of kb bits. For each i, 1 ≤ i ≤ k, the encoder select a

symbol si from a real constellation A of size 2b. The encoder then use s1, ..., sk to build matrix

G(s1, ..., sk) based on generalized real orthogonal designs of size n.

The result diversity order is nm. Since the maximum rate is b bits/s/Hz and the block length

is p, the rate of this code is defined as ratio between the actual transmitted bits and the maximum

transmitted bits, which is (kb)/(pb) = k/p.

Define A(R, n) as the minimum p such that there exists a p× n generalized orthogonal design

with rate at least R. (If no such p exists, assign A(R, n) = ∞.) Finding the values of A(R, n) is

considered the fundamental question of generalized orthogonal design theory. The most interesting
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case is finding A(1, n) which involves codes with optimal rates.

It is shown that for any R, A(R, n) <∞. In particular, for R = 1,

A(1, n) = min
(c,d)∈U

24c+d, where

U = {(c, d) : 0 ≤ c, 0 ≤ d ≤ 4, 8c+ 2d ≥ n}.

Therefore, we can construct space-time coding for any number of transmit antennae. However,

for values of n other than 2, 4, or 8, we do not have the block length p equal to the number of

antennae n. We next describe the code construction in details.

The code construction is based on a Hurwitz-Radon family of matrices. A set of n × n real

matrices {B1, ..., Bk} is called a size k Hurwitz-Radon family of matrices if

B∗iBi = I, B∗i = −Bi, 1 ≤ i ≤ k,

BiBj = −BjBi, 1 ≤ i, j ≤ k.

For any n = 2ab, where b is odd and a = 4c+ d with 0 ≤ d < 4 and 0 ≤ c, Radon showed that

any Hurwitz-Radon family of matrices contains less than ρ(n) = 8c+2d ≤ n matrices. Furthermore,

for any n, by explicit construction, there exists a Hurwitz-Radon family of matrices with ρ(n)− 1

members which are all integer matrices (all entries are 0 or ±1).

To construct the space-time block code of length p. Choose a Hurwitz-Radon family of integer

matrices with ρ(p)− 1 members {A1, A2, ..., Aρ(p)−1}. Let A0 = I and denote X = (x1, ..., xp). We

can construct a p × n generalized real orthogonal design G by setting the jth column of G to be

Aj−1X
∗. It follows that G has full rank and thus yields diversity order nm as desired.

Using this method, generalized real orthogonal designs of size 3, 5, 6, and 7 are explicted

constructed. Therefore, block codes for any number of antennae between 2 and 8 are available.
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Examples of orthogonal designs of size 3 and 5 are given below.

G3 =


x1 x2 x3

−x2 x1 −x4

−x3 x4 x1

−x4 x3 x2

 , G5 =



x1 x2 x3 x4 x5

−x2 x1 x4 −x3 x6

−x3 −x4 x1 x2 x7

−x4 x3 −x2 x1 x8

−x5 −x6 −x7 −x8 x1

−x6 x5 −x8 x7 −x2

−x7 x8 x5 −x6 −x3

−x8 −x7 x6 x5 −x4



.

Complex Orthogonal Designs

We shall end by briefly mentioning key results in complex orthogonal designs. A complex orthogonal

design Oc of size n is an orthogonal matrix whose rows are permutations of ±x1, ...,±xn, their

conjugates ±x∗1, ...,±x∗n, or multiples of these indeterminates by ±
√
−1.

It is shown that complex orthogonal designs exist if and only if n = 2. Again, allowing linear

processing of transmit signals does not increase the set of n for which the designs exist.

To extend the set of n for complex orthogonal designs, generalized complex orthogonal designs

are defined in an analogous fashion as generalized real orthogonal designs. However, block codes

are guaranteed to exist for any value of n only for rate R ≤ 1/2. For rate R > 1/2, by allowing

linear processing of transmit signals, block codes of rate 3/4 for n = 3 and 4 are shown to exist by

explicit construction. The problem of complex orthogonal designs of rate R > 1/2 is still not well

understood.
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