Communication through wireless channel

- Fading
- Diversity: temporal, spatial, frequency

Tarokh et al (1998, 1999): space-time coding

- Concentrate on block codes
- Quasistatic fading (block fading)
- Perfect channel information at receiver

Model parameters

- n: # Tx antennae.
- m: # Rx antennae
- $\alpha_{i,j}$: path gain from Tx i to Rx jAssume $\alpha_{i,j}$'s are IID $\sim \mathcal{N}(0, 1/2 \text{ per dim})$.
- l: block length
- \bullet c_t^i : Tx signal at time t by Tx antenna i
- r_t^j : Rx signal at time t by Rx antenna j
- η_t^j : AWGN $\sim \mathcal{N}(0, 1/SNR \text{ per dim})$

Model (cont.)

- Codeword $\mathbf{c} = (c_1^1, ..., c_l^1, c_1^2, ..., c_l^2, ..., c_1^n, ..., c_l^n)$
- Receiver obtains

$$r_t^j = \sum_{i=1}^n \alpha_{i,j} c_t^i + \eta_t^j$$

Optimal decision: choose \mathbf{c} that minimizes

$$\sum_{t=1}^{l}\sum_{j=1}^{m}\left|r_{t}^{j}-\sum_{i=1}^{n}lpha_{i,j}c_{t}^{i}
ight|^{2}$$

Derivation of performance criteria

• Using $Q(x) \leq \exp(-x^2/2)$,

$$P(\mathbf{c} \to \mathbf{e} | \alpha_{i,j}) \leq \exp\left[-\frac{SNR}{2}d^2(\mathbf{c}, \mathbf{e})\right], \text{ where}$$

$$d^2(\mathbf{c}, \mathbf{e}) = \sum_{j=1}^m \sum_{t=1}^l \left|\sum_{i=1}^n \alpha_{i,j} c_t^i - \sum_{i=1}^n \alpha_{i,j} e_t^i\right|^2$$

•
$$\Omega_j \cong (\alpha_{i,j}, ..., \alpha_{n,j}),$$

$$A_{i,i'} \cong (c_1^i - e_1^i, ..., c_l^i - e_l^i) \cdot (c_1^{i'} - e_1^{i'}, ..., c_l^i - e_l^{i'})$$

$$\Rightarrow d^2(\mathbf{c}, \mathbf{e}) = \Sigma_{j=1}^m \Omega_j A \Omega_j^*$$

$$P(\mathbf{c} \to \mathbf{e} | \alpha_{i,j}) \le \exp \left[-\frac{SNR}{2} \sum_{j=1}^{m} \Omega_j A \Omega_j^* \right]$$

Derivation of performance criteria (cont.)

$$P(\mathbf{c} \to \mathbf{e} | \alpha_{i,j}) \le \exp \left[-\frac{SNR}{2} \sum_{j=1}^{m} \Omega_j A \Omega_j^* \right]$$

- $\lambda_1, ..., \lambda_n \cong$ eigenvalues of A (possibly 0) $A \text{ is Hermatian} \Rightarrow \lambda_i \text{'s are real and nonnegative}$ $r \cong \text{rank of } A$
- By averaging over $\alpha_{i,j}$'s and with some algebra,

$$P(\mathbf{c} \to \mathbf{e}) \leq \left(\prod_{i=1}^{r} \lambda_i\right)^{-m} \left(\frac{SNR}{2}\right)^{-rm}$$

rm: diversity advantage (diversity order) $(\prod_{i=1}^r \lambda_i)^{1/r}$: coding advantage

• Concentrate on diversity order (why?)

Derivation of performance criteria (cont.)

$$B(\mathbf{c}, \mathbf{e}) \cong \begin{bmatrix} e_1^1 - c_1^1 & e_2^1 - c_2^1 & \cdots & e_l^1 - c_l^1 \\ e_1^2 - c_1^2 & e_2^2 - c_2^2 & \cdots & e_l^2 - c_l^2 \\ \vdots & \vdots & & \vdots \\ e_1^n - c_1^n & e_2^n - c_2^n & \cdots & e_l^n - c_l^n \end{bmatrix}$$

- $B(\mathbf{c}, \mathbf{e})$ is a square root matrix of $A(\mathbf{c}, \mathbf{e})$, i.e. $A = BB^*$ rank(B) = rank(A)
- The rank criterion:

For maximum diversity order nm, make $B(\mathbf{c}, \mathbf{e})$ full rank for all (\mathbf{c}, \mathbf{e}) pairs. Real orthogonal designs

Definition: A real orthogonal design of size n is an $n \times n$ orthogonal matrix whose rows are permutations of real numbers $\pm x_1, ..., \pm x_n$.

e.g.
$$\begin{bmatrix} x_1 & x_2 \\ -x_2 & x_1 \end{bmatrix}, \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ -x_2 & x_1 & -x_4 & x_3 \\ -x_3 & x_4 & x_1 & -x_2 \\ -x_4 & -x_3 & x_2 & x_1 \end{bmatrix}$$

- WLG, 1st row is $(x_1, ..., x_n)$.
- Hurwitz-Radon theory: real orthogonal designs exist if and only if n = 2, 4, or 8.

Space-time block codes from real orthogonal designs

A: real constellation of size 2^b
 Theorem: If diversity order is nm, Tx rate ≤ b bits/s/Hz.

 \bullet Encoder takes in blocks of nb bits.

Encoder picks $s_i, 1 \leq i \leq n$, from \mathcal{A} .

Build an orthogonal design $\mathcal{O}(s_1,...,s_n)$.

At time t, n antennae transmit t^{th} row of \mathcal{O} .

• Tx rate is b bits/s/Hz.

Theorem: The diversity order of code from orthogonal design \mathcal{O} is nm.

• But only good for n = 2, 4, or 8.

Generalized real orthogonal designs

Definition: A generalized real orthogonal design of size n is an $p \times n$ matrix \mathcal{G} with entries $0, \pm x_1, ..., \pm x_k$ such that

 $\mathcal{G}^*\mathcal{G} = D$, a $p \times p$ diagonal matrix whose i^{th} diagonal entry is of the form $l_1^i x_1^2 + \ldots + l_k^i x_k^2$ with $l_1^i = \ldots = l_k^i$ being strictly positive integers.

WLG, $\mathcal{G}^*\mathcal{G} = I(x_1^2 + ... + x_k^2)$ $(p \times p \text{ matrix}).$

$$e.g. \ \mathcal{G}_{3} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ -x_{2} & x_{1} & x_{4} & -x_{3} & x_{6} \\ -x_{2} & x_{1} & x_{4} & -x_{3} & x_{6} \\ -x_{3} & -x_{4} & x_{1} & x_{2} & x_{7} \\ -x_{4} & x_{3} & -x_{2} & x_{1} & x_{8} \\ -x_{5} & -x_{6} & -x_{7} & -x_{8} & x_{1} \\ -x_{6} & x_{5} & -x_{8} & x_{7} & -x_{2} \\ -x_{7} & x_{8} & x_{5} & -x_{6} & -x_{3} \\ -x_{8} & -x_{7} & x_{6} & x_{5} & -x_{4} \end{bmatrix}.$$

Space-time block codes from generalized real orthogonal designs

- \mathcal{A} : real constellation of size 2^b
- \bullet Encoder takes in blocks of kb bits.

Encoder picks $s_i, 1 \leq t \leq k$, from \mathcal{A} .

Build an orthogonal design $\mathcal{G}(s_1,...,s_k)$.

At time t, n antennae transmit t^{th} row of \mathcal{G} .

• Tx rate is $kb \le pb$ bits/s/Hz.

The rate of the code is k/p.

Theorem: The diversity order of code from orthogonal design \mathcal{G} is nm.

• But is it good for all n?

Fundamental question of generalized orthogonal design theory

• $A(R, n) \cong \min p$ such that a $p \times n$ generalized orthogonal design with rate $\geq R$ exists.

If no such p exists, let $A(R, n) = \infty$.

• Finding A(R, n) is the fundamental question.

Most interesting A(1, n) for efficiency.

Theorem: $A(R, n) < \infty$ for any R.

Construction of $\mathcal{G}(x_1,...,x_p)$ with rate 1

• Hurwitz-Radon family of matrices

Definition: A set of $n \times n$ real matrices $\{B_1, ..., B_k\}$ is called a size k Hurwitz-Radon family of matrices if

$$B_i^* B_i = I, \ B_i^* = -B_i, \ 1 \le i \le k,$$

 $B_i B_j = -B_j B_i, \ 1 \le i, j \le k.$

• Hurwitz-Radon theory: any Hurwitz-Radon family of matrices contains less than $\rho(n) \leq n$ matrices.

Write
$$n=2^ab$$
, b odd, $a=4c+d$ with $0 \le d < 4$, $0 \le c$.
$$\rho(n)=8c+2^d \le n$$

For any n, by explicit construction, there exists a Hurwitz-Radon family with $\rho(n)-1$ integer matrices (all entries are 0 or ± 1).

Construction of $\mathcal{G}(x_1,...,x_p)$ with rate 1 (cont.)

- Choose a Hurwitz-Radon family of $\rho(p)-1$ integer matrices $\{A_1,A_2,...,A_{\rho(p)-1}\}.$ $A_0\cong I,\,X\cong (x_1,...,x_p)$
- Construct a $p \times n$ matrix $\mathcal{G}(x_1, ..., x_p)$ by setting the j^{th} column of \mathcal{G} to $A_{j-1}X^*$.
- \mathcal{G} of size n exists for all n.

 Can construct space-time block codes for all n.

 But the block length p can be large?

(Orthogonal designs are delay optimal at n = 2, 4, and 8.)

Complex orthogonal designs

Definition: A complex orthogonal design \mathcal{O}_c of size n is an orthogonal matrix whose rows are permutations of $\pm x_1, ..., \pm x_n$, their conjugates $\pm x_1^*, ..., \pm x_n^*$, or multiples of these indeterminates by $\pm \sqrt{-1}$.

- Complex orthogonal designs exist if and only if n = 2.
- Generalized complex orthogonal designs are similarly defined. Designs are known to exist for any n only for rate $R \leq 1/2$. For rate R > 1/2, block codes of rate 3/4 for n = 3 and 4 are shown to exist by explicit construction.

Designs with rate R > 1/2 are still not well understood.

Summary

- Model: block fading, IID path gains, perfect channel info
- Rank criterion for space-time coding
- Real orthogonal designs: n = 2, 4, or 8
- Generalized real orthogonal designs
- ullet Block codes from orthogonal designs: rate 1 for any n
- \bullet Complex orthogonal designs: rate $\leq 1/2$ for any n

Theorem: If diversity order is nm and $|\mathcal{A}| = 2^b$, Tx rate $\leq b$ bits/s/Hz.

Proof: View each code word \mathbf{c} as a member in $[\mathcal{A}^l]^n$.

$$c_1^1 \cdots c_1^n c_2^1 \cdots c_2^n \cdots c_l^1 \cdots c_l^n = [(c_1^1 \cdots c_l^1), \cdots, (c_1^n \cdots c_l^n)]$$

 $A_{2^{bl}}(n,r)\cong\max$ size of code with block length l and Hamming distance r over constellation size 2^{bl} .

Since $B(\mathbf{c}, \mathbf{e})$ has rank at least r, at least r rows are nonzero.

Thus, the Hamming distance is at least r for all codewords in $[\mathcal{A}^l]^n$. Tx rate $\leq \frac{\log_2 A_{2bl}(n,r)}{l}$.

For
$$r = n$$
, $A_{2^{bl}}(n, n) = 2^{bl}$ (repetition code).

Theorem: Diversity order of code from orthogonal design \mathcal{O} is nm.

Proof: The rank criterion requires nonsingularity of

$$B(\tilde{\mathbf{s}}, \mathbf{s}) = \mathcal{O}(\tilde{s}_1, ..., \tilde{s}_n) - \mathcal{O}(s_1, ..., s_n).$$

Note that

$$\mathcal{O}(\tilde{s}_1, ..., \tilde{s}_n) - \mathcal{O}(s_1, ..., s_n) = \mathcal{O}(\tilde{s}_1 - s_1, ..., \tilde{s}_n - s_n),$$

and

$$\det(\mathcal{O}) = \det(\mathcal{O}\mathcal{O}^*)^{1/2} = \left[\sum_i x_i^2\right]^{n/2}.$$

Thus

$$\det(\mathcal{O}(\tilde{s}_1 - s_1, ..., \tilde{s}_n - s_n)) = \left[\sum_{i} |\tilde{s}_i - s_i|^2\right]^{n/2} > 0.$$