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Abstract

We exhibit an algorithm for portfolio selection that asymptotically outperforms
the best stock in the market. Let x; = (i1, T42, . . ., Tim)! denote the performance
of the stock market on day ¢ , where z;; is the factor by which the j-th stock
increases on day i . Let b; = (bj, bz, ..., bim)" ,bij >0, >;bij =1, denote the
proportion b;; of wealth invested in the j-th stock on day 4 . Then S, = [[i-; bix;
is the factor by which wealth is increased in n trading days.

Consider as a goal the wealth Sy = maxy, [[i-; b’x; that can be achieved by the
best constant rebalanced portfolio chosen after the stock outcomes are revealed. It
can be shown that S exceeds the best stock, the Dow Jones average, and the value
line index at time n. In fact, S;; usually exceeds these quantities by an exponential
factor.

Let x1,X9,..., be an arbitrary sequence of market vectors. It will be shown that
the nonanticipating sequence of portfolios by, = [ bez_ll bix;db/ [ Hfz_ll b'x;db
yields wealth S, = [2_, E)';cxk such that () In(S:/S,) — 0, for every bounded

sequence Xi,Xo, ..., and, under mild conditions, achieves

N

Sp ~ S¥(m — D)2 /n)m=D2 ) g, V2

where J, is an (m — 1) x (m — 1) sensitivity matrix. Thus this portfolio strategy

has the same exponential rate of growth as the apparently unachievable S} .
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work was partially supported by NSF Grant NCR 89-14538.



1 Introduction.

We consider a sequential portfolio selection procedure for investing in the stock market
with the goal of performing as well as if we knew the empirical distribution of future
market performance. Throughout the paper we are unwilling to make any statistical
assumption about the behavior of the market. In particular, we allow for the possibility
of market crashes such as those occurring in 1929 and 1987. We seek a robust procedure

with respect to the arbitrary market sequences that occur in the real world.

We first investigate what a natural goal might be for the growth of wealth for arbitrary
market sequences. For example a natural goal might be to outperform the best buy-and-
hold strategy, thus beating an investor who is given a look at a newspaper n days in the

future.

We propose a more ambitious goal. To motivate this goal let us consider all constant
rebalanced portfolio strategies. Let x = (z1,Z9,...,%,)" > 0 denote a stock market
vector for one investment period, where z; is the price relative for the ith stock, i.e., the
ratio of closing to opening price for stock i . A portfolio b = (by,ba, ..., by, by > 0,
> b; =1, is the proportion of the current wealth invested in each of the m stocks. Thus
S = b'x = Y b;z;, where b and x are considered to be column vectors, is the factor by

which wealth increases in one investment period using portfolio b.

Consider an arbitrary (nonrandom) sequence of stock vectors X1, Xs, . .., X,eR"'. Here
x;; is the price relative of stock j on day ¢. A constant rebalanced portfolio strategy b

achieves wealth .
Sn(b) = H b'x; , (1)
i=1

where the initial wealth So(b) = 1 is normalized to one. Let
Sy = max Sn(b) (2)

denote the maximum wealth achievable on the given stock sequence maximized over all

constant rebalanced portfolios. Our goal is to achieve S;.

We will be able to show that there is a “universal” portfolio strategy Bk, where f)k
is based only on the past xi,Xs,...,X;_1, that will perform asymptotically as well as
the best constant rebalanced portfolio based on foreknowledge of the sequence of price
relatives. At first it may seem surprizing that the portfolio by, should depend on the

past, because the future has no relationship to the past. Indeed the stock sequence is



arbitrary, and a malicious nature can structure future x;’s to take advantage of past
beliefs as expressed in the portfolio f)k Nonetheless the resulting wealth can be made to
track S;.

The proposed universal adaptive portfolio strategy is the performance weighted strat-

egy specified by

best = / bSy(b)db/ / S (b)db, (3)
where )
Sk(b) = i_Hlbtxz- : (4)

and the integration is over the set of (m — 1)- dimensional portfolios
B={beR™:b;>0,> bj=1}. (5)
i=1

The wealth S, resulting from the universal portfolio is given by
S’n = H E)ZX/C . (6)
k=1

Thus the initial universal portfolio b, is uniform over the stocks, and the portfolio Bk
at time k is the performance weighted average of all portfolios be B. An approximate
computation will be given in Section 8, and a generalization of this algorithm will be

given in Section 9.

We will show that .
A 1
—InS,——InS; =0, (7)
n n
for arbitrary bounded stock sequences X1, Xs, . ... Thus S, and S, have the same exponent

to first order. A more refined analysis shows

[ S ®)

n )
nd, "

in a sense that will be made precise. It is difficult to summarize the behavior of S,
relative to S because of the arbitrariness of the sequence and the fact that we cannot
assume a limiting distribution. For example, even the limit of % In S} cannot be assumed

to exist.



The goal of uniformly achieving S;(xi,Xs,...,Xy,), as specified in (7), was partially
achieved by Cover and Gluss (1986) for discrete valued stock markets by using the theory
of compound sequential Bayes decision rules developed in Robbins (1951), Hannan and
Robbins (1955), and the game-theoretic approachability-excludability theory of Blackwell
(1956a, 1956b). Work on natural investment goals can be found in Samuelson (1967) and
Arrow (1974). The vast theory of undominated portfolios in the mean-variance plane
is exemplified in Markowitz (1952) and Sharpe (1963), while the theory of rebalanced
portfolios for known underlying distributions is developed in Kelly (1956), Mossin (1968),
Thorp (1971), Markowitz (1976), Hakansson (1979), Bell and Cover (1980, 1988), Cover
and King (1978), Cover (1984), Barron and Cover (1988), and Algoet and Cover (1988).
A spirited defense of utility theory and the incompatibility of utility theory with the
asymptotic growth rate approach is made in Samuelson (1967, 1969, 1979) and Merton
and Samuelson (1974).

We see the present work as a departure from the above model-based investment
theories, whether they be based on utility theory or growth rate optimality. Here the goal
S* = maxy, [[7_; b'x; depends solely on the data and does not depend upon underlying
statistical assumptions. Moreover, Theorem 1, for example, provides a finite sample lower
bound for the performance S, of the universal portfolio with respect to Sy. Therefore
the case for success rests almost entirely on the acceptance of S;; as a natural investment

goal.

The performance of the universal portfolio is exhibited in Section 8, where numerous
examples are given of S, (b), S} and S,, for various pairs of stocks. In general, volatile
uncorrelated stocks lead to great gains of S;; and S, over the best buy-and-hold strategy.

However, ponderous stocks like IBM and Coca Cola show only modest improvements.

2 Elementary Properties.

We wish to show that the wealth S, generated by the universal portfolio strategy bi

exceeds the value line index and that Sn is invariant under permutations of the stock

sequence Xi,Xs,...,X,. We will use the notation
W (b, F) = / In bxdF (x) 9)
W*(F) = max W(b, F) , (10)
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and we will denote by F), the empirical distribution associated with x;,x,, ..., x,, where

F,, places mass % at each x;. In particular we note that

=1

For purposes of comparison, we pay special attention to buy-and-hold strategies b =
e; =(0,0,...,0,1,0,...,0), where e; is the j-th basis vector. Note that

Sn(ej) = szleg'xk = Iz 2k, (12)

is the factor by which the j-th stock increases in n investment periods. Thus S, (e;) is

the result of the buy-and-hold strategy associated with the j-th stock.
We now note some properties of the target wealth S7:
Proposition 1 (Zarget exceeds best stock):
Sy > max Sy(ej) . (13)
j=12,...m

Proof: S} is a maximization of S,(b) over the simplex, while the right hand side is a

maximization over the vertices of the simplex. O
Proposition 2 (Target exceeds value line):
" m 1/m
Sy > (7, Sn(e;)) (14)

Proof: Each S,(e;) is < S;. O

The next proposition shows that the target exceeds the DJIA.

Proposition 3 (Target exceeds arithmetic mean): If a; > 0, - o; = 1, then

Sn > D a;Su(e)) (15)
7j=1
Proof:
Sn(ej) <SS, j=12,...,m.0 (16)

Thus S} exceeds the arithmetic mean, the geometric mean, and the maximum of the
component stocks. Finally, it follows by inspection that S} does not depend on the order

in which xy,x,,...,x, occur:



Proposition 4: S’(x,X3,...,X,) is invariant under permutations of the sequence

X1,X2,...,Xp.

Now recall the proposed portfolio algorithm in (3) with the resulting wealth

A

S, =TI"_ blx, . (17)
It will be useful to recharacterize S, in the following way.

Lemma 1 .
S, = [ blxy = /Sn(b)db//db (18)
k=1

where

S,(b) = ﬁbtxi . (19)

Thus the wealth S, resulting from the universal portfolio is the average of S,(b) over

the simplex.

Proof: Note from (3) and (4) that

~

B, [ btx; [157! blx;db
k

[ TI5! btx;db

k k—1
_ /Hbtxz-db//Hbtxidb . (21)
=1 =1

Thus the product in (17) telescopes into

§, =TT Blxs = /ﬁbtxidb//db - /Sn(b)db//db O (22)

We observe two properties of the wealth S, achieved by the universal portfolio.

Proposition 5 (Universal portfolio exceeds value line index):
A m 1/m
Sn > (17,80 (e5)) ™ (23)

Proof: Let F), be the empirical cumulative distribution function induced by x1,Xs,...,X, .

By two applications of Jensen’s inequality, and writing
/ S (b)db/ / db = Ep Sy (b), (24)

6



we have

oy
I

By Sa(b)
= Ep W)

> nEW(bFy)

"By [ InbixdFy, (x)

— "B [In(]L, bjelx)dFu(x)
> b >, by [ In(elx)dFn(x)

_ en(% Eflnejxan(x))

= (H;'nzlsn(ej))m = (25)
Thus the wealth induced by the proposed portfolio dominates the value line index for

any stock sequence Xi,Xs, ..., X,, for all n.

Next, we observe that although b depends on the order of the sequence x1, X, . .., X,,

the resulting wealth S, = ITb.x; does not.

~

Proposition 6: S, is invariant under permutations of the sequence x1,Xg, ..., X,.

Proof: Since the integrand in
& _ 17 Rt _ _ n e
S, = I, bl x; = /B S,,(b)db/ /B db = /B I, blx,db/ /B db, (26)

is invariant under permutations, so is S,. O

This observation guarantees that the crash of 1929 will have no worse consequences

for wealth S, than if the bad days of that time had been sprinkled out among the good.

3 The Reason the Portfolio Works.

The main idea of the portfolio algorithm is quite simple. The idea is to give an amount
db/ [5 db to each portfolio manager indexed by rebalancing strategy b , let him make
S, (b) = e"W®F)gb/ [ db at exponential rate W (b, F},) and pool the wealth at the end.

7



Of course, all dividing and repooling is done “on paper” at time k , resulting in by -
Since the average of exponentials has, under suitable smoothness conditions, the same
asymptotic exponential growth rate as the maximum, one achieves almost as much as the
wealth S; achieved by the best constant rebalanced portfolio. The trap to be avoided is
to put a mass distribution on the market distributions F'(x). It seems that this cannot

be done in a satisfactory way.

4 Preliminaries.

We now introduce definitions and conditions that will allow characterization of the be-
havior of S, /S* .

Let F,,(x) denote the empirical probability mass function putting mass = on each of
the points X1,Xs, ..., X, € RT. Let the portfolio b* = b*(F,) achieve the maximum of
S,(b) = %, b*x;. Equivalently, since S,(b) = "W ®:F=) the portfolio b*(F,,) achieves
the maximum of W (b, F},). Thus

S* =max S, (b) = "V (Fn) (27)

Definition: We shall say all stocks are active (at time n) if (b*(F,)); > 0,i=1,2,...,m,
for some b* achieving W*(F,). All stocks are strictly active if inequality is strict for all
i and all b* achieving W*(F,,) .

Definition: We shall say x1,xs,...,x, € R™ are of full rank if x1,x,,...,X, spans R™.

The condition of full rank is usually true for observed stock market sequences if n
is somewhat larger than m, but the condition that all stocks be active often fails when
certain stocks are dominated. The next definition measures the curvature of S, (b) about

its maximum and accounts for the second order behavior of S, with respect to Sz

Definition: The sensitivity matriz function J(b) of a market with respect to distribution
F(x), x € R is the (m — 1) x (m — 1) matrix defined by

Ji-(b)=/($i_$(’gzgg_xm)dF(X), 1<i,j<m—1. (28)

The sensitivity matriz J* is J(b*), where b* = b*(F') maximizes W (b, F).

8



We note that
_GQW((bT’bga T b*m—la 1- Ezn;_ll b;k)’ F)

Jij = db;0b;

(29)

Lemma 2 J* is nonnegative definite, and is positive definite if all stocks are strictly

active.

5 Analysis for Two Assets.

We now wish to show that Sn / Sk ~ y/2m [nJ, where J, is the curvature or volatility index.
We show in detail that /27 /n.J, is an asymptotic lower bound on S,/S* and indeed
develop explicit lower bounds on S, /Sy for all n and any market sequence Xi,...,Xy, .
We develop an upper bound by invoking strong conditions on the market sequence.

Section 6 outlines the proof for m assets.

We investigate the behavior of S, for m = 2 stocks. Consider the arbitrary stock
vector sequence
x; = (Ti1, z)eR2, i =1,2,... . (30)

We now proceed to recast this 2-variable problem in terms of a single variable. Since the

portfolio choice requires the specification of one parameter, we write

b=(b,1-b),0<b<1, (31)
and rewrite S, (b) as
i=1
Let
Sr = max S,(b), (33)
o<b<1

and let by denote the value of b achieving this maximum. Section 8 contains examples

of these graphs.



The universal portfolio

by = (by , 1 — by) (34)
is defined by
~ 1 1
by = / by (b)db/ / S (b)db (35)
0 0
and achieves wealth
Sn =TI (bsza + (1 = b)) . (36)
=1
Let
1
W) = —InS,(b) (37)
n
1 n
= ;zmmm+u—wm) (38)
=1
- / In(bz: + (1 — b)zs)dFy(x) | (39)

where F),(x) is the empirical cdf of {x;}?, . By Lemma 1, the wealth S, achieved by

the universal portfolio by is given by

R 1
S, = /0 Wa®) gy (40)

In order to characterize the behavior of S, we define the following functions of the

sequence Xi,Xs,...,X,. Define the relative range 7, of the sequence x;,xs ..., X, to be
max{z;,
T, = 213 () {zy} 1), (41)
min{x;; }
where the minimum and maximum are taken over 1 =1,2,...,n; j =1,2. Let

Z le - xz2)* (42)

1:1 b*ﬁﬁzl -+ (1 b )Iig)z ’

’I’L

where b maximizes W, (b). Let

* = max W, (b) = W,(b;) . (43)



Thus 7,, corresponds to the relative range of the price relatives and J,, denotes the cur-

vature of In S, (b) at the maximum.

Theorem 1 Let xX1,Xo,... be an arbitrary sequence of stock vectors in Ri and let a, =

min{b’,1—b},3J,/72}. Then for any 0 < € < 1, and for any n,

S 21 2 )
on o _ —€2(1+€)anJnn/2 44
Sy \Vnd,(1+e¢) €1+ e)aanne (44)

Remarks: This theorem says roughly that S,/S* > 1/27/nJ,. So the universal
wealth is within a factor of C/y/n of the (presumably) exponentially large Sy. It will
turn out that every additional stock in the universal portfolio costs an additional factor
of 1/y/n. But these factors become negligible to first order in exponent. It is important
to mention that this theorem is a bound for each n. The bound holds for any stock

sequence with bound 7,, and volatility .J,,.

Proof: We wish to bound S, = [} e"™»®db. We first expand W, (b) about the
maximizing portfolio b} , noting that W, (b) has different local properties for each n and

indeed a different maximizing b; . We have

! b_b*2 " b_b*3 nro, =
Wa(b) = Wa5) + (b — by (o) + 2w oy + Ol )
where b, lies between b and b} .
We examine the terms:
(i) The first term is
1
where S? is the target wealth at time n .
(ii) The second term is
AP r1 — T2
Wbl = [ T 40
= 0,if0<b; <1, (47)

by the optimality of b} ;
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(iii) The third term is

wiop) = - [ 2 o = (48)

Thus W;l' (by) > 0, with strict inequality if 0 < b} < 1 and x;; # 24 for some time
1 . This term provides the constant in the second order behavior of S,

(iv) And

3

"o~ _ (.’L‘l - .’EQ)
Wb =2 B+ (1 byt - 49)

We have the bound

mo,=~ .'El - .’L'Q)?’
W (ba) | = / dF,(x 50
W | = | g an 50)
< 73, forallb, €[0,1] . (51)
Thus
b —b* 3 -3
S (b) > exp (nW*——(b boy2, — 6”' Tn) , (52)
for0<b<1,
where
(21 — 22)°
b= dF,(x) . 53
(b + (@~ b O )
We now make the change of variable
u=+vn(b—by), (54)
where the new range of integration is
—vn bl <u<yn (1-0b)) . (55)

12



Then, noting e"» = S* | we have

S, = / "5, (b)db (56)

1 b) 2J 1 3|3
3u”In— g |uP|Td
6/ du . (57)
\/_/

We wish to approximate this by the normal integral. To do so let 0 < ¢ < 1 and note
that

L, |ul® Lo
——u-J, L >——wu'J,(1 58
2" 6/ = 3¢t (58)
for
u < 3ey/nd, /T2 . (59)
Let ® denote the cdf of the standard normal,
®(z =—/ e~/ gy 60
@ =7/ (60)
and let
a, = min{b* |1 —b* 3J,/7} . (61)

Thus a, is a measure of the degree to which S, (b) has a maximum of reasonable curvature

within the unit interval. Then from (57), for any 0 < e <1 ,

S Vi (1-b) 2
v S, > / e T a P gy (62)
S —Vn b,
VN ane 1
Z / e—§u2Jn(1+e) du (63)
—/N ane
= /OO e 3 In(He) gy 2/ Mnee_ium‘(”f)d (64)
= /Mg, (1 . 65
1+e 1+€ —€an\/nJy( +6)) (65)

13



We use the inequality
1

*.562/2 1 ]. 7:”2/2
\/We (1-— P) <®(—1x) < We ) (66)

for z > 0, to obtain the bound

1 2,2
P (—ean ndn(1+ 6)) < e € andn(l4e)/2 (67)
\/QWGZG%an(l + ¢€)
Hence
\/ﬁSn > 27 _ 2 e—e2a%an(1—|—e)/2 ) (68)
Sy TV J(l4¢) €andn(l+ €)yv/n
for any 0 < e <1, for all n, and all x;,xs,... , which proves the theorem. O

The explicit bounds in Theorem 1 may be useful in practice, but a cleaner summary of

performance is given in the following weaker theorem.

Theorem 2 Let x1,Xq,... be a sequence of stock vectors in Ri and suppose 6 < by <
1-96, 7, <7 <00, and J, > J >0, for a subsequence of times ny,ny,.... Then
Sn/ S
lim inf n/ % >1, (69)

nee 2w nd,

along this subsequence.

Proof: The conditions of the theorem, together with Theorem 1, imply

So/Sa o [ 1 2V
V2m/nd, (1+€n) €,V/2mnJ min{é, 3.J/73}

where 7 is the bound ratio, and where we are free to choose €,€[0, 1] at each n. Noting

(70)

that J, < 72 < oo and letting €, = n~1/4 proves the theorem. O

We have just shown that S’n/S;i is as good as (/27 /nJ,. We now show that it is no
better. For this we consider a subsequence of times such that W, (b) is approximately
equal to some function W(b) and argue that upper bounds on fol e D) gh suffice to
limit the performance of the wealth S, . Toward that end, let us consider functions W
such that

14



(i) W(b) is strictly concave on [0,1] ,
(ii) W" (b) is bounded on [0,1] ,
(iii) W (b) achieves its maximum at b* € (0,1) . (71)
We plan to pick out a subsequence of times such that W,(b) = % ? ;Inbfx; ap-
proaches W (b). We can expect such limit points from Arzela’s Theorem on the compact-

ness of equicontinuous functions on compact sets. Let b; maximize W,,(b) . Let {n;} be

a subsequence of times such that for n = nq,no, ...,

(i) Wa(b) <W(b),0< b <1,

(it) W, (by) = W (b7). (72)

Recall the notation J, = —W, (b%) . The following theorem establishes the tightness

of the lower bound in Theorem 2.

Theorem 3 For any Xi,Xg,... € Ri and for any subsequence of times ni,ng, ... such
that W,,(b) satisfies the conditions (72) for W (b) satisfying (71),

~

Sy, 21
S_;; - nJ, ’ (73)
along the subsequence.
Proof: The lower bound follows from Theorem 2.
From Laplace’s method of integration we have
/ b enolw) gy~ gna) [ 2T (74)
0 nlg” (u*)]

if g is three times differentiable with bounded third derivative, strictly concave, and the

u* maximizing ¢(-) is in the open interval (0, 1) . Consequently,



o) [ 2T
n|W" (b%)]

2T 27
= § | —T g 75
"\ W (bY)] "\ nJ, (75)

and the theorem is proved. O

6 Main Theorem.

Here we prove the result for m assets under the assumption that all stocks are active
and of full rank and b} (F,) — b* € int(B). We discuss removing the conditions in
Section 9. For example, lack of full rank reduces the dimension from m to m’, as does
the existence of inactive stocks. Finally, b% (F},) need not have a limit, in which case we
can describe the behavior of S, for convergent subsquences of b (F,), as well as develop

explicit bounds for all n.

From Lemma 1, we have

A

Sn:/BSn(b)db//Bdb.
where
Sk(b) = H;C:lbtxia

c J bS(b)db
ST

_ n  ft

A summary of the performance of by, is given by the following theorem.

Theorem 4 Suppose X1,Xa,...€[a,c]™,0<a<c<oo ,and at a subsequence of times
ni,No, ..., Wu(b) S W(b) forbeB, J: — J*, bl — b*, where W(b) is strictly concave,
the third partial derivatives of W are bounded on B, and W (b) achieves its mazimum at
b* in the interior of B. Then

~ m—1
Sh, 27 (m—1)!
2 () &

in the sense that the ratio of the right and left hand sides converges to 1 along the

subsequence.

16



Proof: (Outline) We define

C={(c,co,. .y Cm1) : ¢ >0, X¢; < 1} (77)
and
S,(c) = I bt (c)x; , ceC, (78)
where »
b(c) = (1,625 -y Cm1,1 = D i) - (79)
i=1
Note that
Vol(C) = / de=— 1 (80)
c (m—1)!

We shall prove only the lower bound associated with (76). From Lemma 1, the universal

portfolio algorithm yields
S, = /Sn(b)db//db — EuSn(b) (81)
where b is uniformly distributed over the simplex B. Since uniform over B induces
uniform over C', we have
S, = (m — 1)!/ S, (c)dc . (82)
c
We now expand S,(c) in a Taylor series about ¢* = (b],..., b}, ;) where b* maximizes
W (b, F,,). We drop the dependence of b* on n for notational convenience. By assump-
tion, b; > 0, for all 7. We have

S, (c) = emWnle) | (83)
where
1 n
Wa(c) = =) Inb'x;
N =
- / In b'xdF, (x)
A t
2 g Inb'X (84)
and
b= (c,1-X¢). (85)
Expanding W, (c), we have
1
Wae) = Wa(c") +(c—c") v Walc") — 5(e =) Ji(c —c) (86)
1 2(X; — X)) (X — Xon) (X — Xia)
S (e — ) (e — ) (ex — ) E 5 ,
+ 6 %(C C’L)(CJ Cj)(ck Ck) Fy 53((:)
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where € = Ac* + (1 — A)c, for some 0 < A < 1, where A may depend on ¢, and

m—1 m—1
i=1 =1
Here
Su(e) = ML b(e)x; , (88)
m—1
b(C) = (Cl,CQ,...,l — Z Ci) y
=1

m—1

W) = [ (ng S ci):ck> P, (x) |

s

dF,(x) ,

gcz-VaVcT; - _/ i »’UgQ)((ZJ)] — %) dF,(x) ,
W laaLa()] ' (89)

The condition that all stocks be strictly active implies by Lemma 2 that |J| > 0, where

| - | denotes determinant. We treat the terms one by one:

(i) By definition of b*,
W(c*) =W(b*, F,) = W*(E,) . (90)

(ii) The second term is 0, because b* is in the interior of B, W, (b) is differentiable, and

b* maximizes W,,. Thus,

) - Byt M 1
aCi Fn b*tX (9 )
- 0,i=1,2...,m—1.
(iii) The third term is a positive definite quadratic form, where J* = J*(b*(F,)).
(iv) For the fourth term
g - 1(0i —¢;)(cj — ¢j)(ex — ) ER, 53(6) , (92)
Z?.]? =

18



we examine

(Xi - Xm)(XJ — Xm) (Xk - Xm)

B, = (93)
We note
S3) = (b'X)?
> (Zhia)?
> a®, (94)
since X; > a, for all 7. Also since X; — X,, < 2b, we have
S (= X (X = Xn) (K = X) _ S 95

ad = S3(€) = a3
We now make the change of variable u = y/n(c — c*), where we note the new range
of integration u € U = y/n(C — c*). Thus

Su(c) = emWn(e)-Blee) i(ee)+5%s
= Wimdul it gy (96)
where 1
b (X = X)X — Xin) (X — X)
T g : - 97
PR F( 6 (97)
Note that
(AN
5] < (z|u,-|) o o)
=1
Observing
Slui] < (up)'y/m (99)
yields )
* * m 2 3
Su(c) > eV 3utaum 5o lulPsbT/a? (100)

The lower bound on Sn becomes

S, = (m—l)!/ecSn(c)dc

—lll *U—M u 3 a 1 —
> (m—1)s; [l gy (101)
uclU \/ﬁ

which can now be bounded using the techniques in the 2-stock proof. The upper bound
follows from Laplace’s method of integration as in Theorem 3, from which the theorem
follows. O
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7 Stochastic Markets.

b"(Fn),Fn) is to consider random

Another way to see the naturalness of the goal S = e""(
investment opportunities. Let X, Xy, ... be independent identically distributed random
vectors drawn according to F'(x), x € R™, where F is some known distribution function.
Let S, (b) = II"_, b*X; denote the wealth at time n resulting from an initial wealth Sy = 1,
and a reinvestment of assets according to portfolio b at each investment opportunity.

Then

Su(b) =L, b'X; = e¥izy Inb'X;

en(E‘ In th—|—op(1))

—  n(W(b,F)+op(1)) (102)

?

by the strong law of large numbers, where the random variable op(1) — 0, a.e. We
observe from the above that, to first order in the exponent, the growth rate of wealth

Sn(b) is determined by the expected log wealth
W (b, F) = / In bxdF (x) (103)

for portfolio b and stock distribution F'(x).

It follows for Xi,Xs, ..., i.i.d. ~ F that b*(F) achieves an exponential growth rate
of wealth with exponent W*(F'). Moreover Breiman (1961) establishes for i.i.d. stock
vectors for any nonanticipating time-varying portfolio strategy with associated wealth

sequence S, that

— 1
lim —In S, < W*(F), a.e. (104)
n

Finally, it follows from Breiman (1961), Finkelstein and Whitley (1981), Barron and
Cover (1988), and Algoet and Cover (1988), in increasing levels of generality on the
stochastic process, that lim,, ., % In g—z < 0, a.e., for every sequential portfolio. Thus
b*(F) is asymptotically optimal in this sense, and W*(F') is the highest possible exponent
for the growth rate of wealth.

We omit the proof of the following.
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Theorem 5 Let X; be i.i.d. ~ F(x) . Let b*(F) be unique and lie in the interior of B.
Then the universal portfolio b ytelds a wealth sequence S, satisfying

1. .
- InS, - W*(F) ,a.e. (105)

Thus, in the special case where the stocks are independent and identically distributed
according to some unknown distibution F', the universal portfolio essentially learns F' in
the sense that the associated growth rate of wealth is equal to that achievable when F

is known.

8 Examples.

We now test the portfolio algorithm on real data. Consider, for example, Iroquois
Brands Ltd. and Kin Ark Corp., two stocks chosen for their volatility listed on the New
York Stock Exchange. During the 22 year period ending in 1985, Iroquois Brands Ltd.
increased in price (adjusted in the usual manner for dividends) by a factor of 8.9151,

while Kin Ark increased in price by a factor of 4.1276, as shown in Fig. 1.

Prior knowledge (in 1963) of this information would have enabled an investor to
buy and hold the best stock (Iroquois) and earn a 791% profit. However, a closer look
at the time series reveals some cause for regret. Table 1 lists the performance of the
constant rebalanced portfolios b = (b,1 —b) , for b = 1,.95,...,.05,0.0 . The graph
of S, (b) is given in Figure 2. For example, reinvesting current wealth in the proportions
b = (.8, .2) at the start of each trading day would have resulted in an increase by a factor
of 37.5 . In fact, the best rebalanced portfolio for this 22 year period is b* = (.55, .45) ,
yielding a factor S} = 73.619 . Here S} is the target wealth (with respect to the coarse
quantization of B = [0, 1] we have chosen). The universal portfolio by achieves a factor
of S, = 38.6727 . While S, is short of the target, as it must be, S,, dominates the 8.9 and
4.1 factors of the constituent stocks. The daily performance of both stocks, the universal
portfolio, and the target wealth are exhibited in Fig. 3. The portfolio choice by as a

function of time k£ is given in Figure 4.

To be explicit in the above analysis, we have quantized all integrals, resulting in

the replacements of
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Sy = mkz)ix Sn(b) by Sr= max_ Sn(i/20) (106)

and

: Jo bSk(b)db : i20 205k (35)
bgi1 = b = 20 _~-20° 107
T RS T R, () 1en
The resulting wealth factor
S, = ] bixs (108)
k=1
is calculated using
. 20 i i 20 i
by = g %Sk(?o)/gsk(%) : (109)

Telescoping still takes place under this quantization and it can be verified that S, in

(108) can be expressed in the equivalent form

R 1 20 i
Sp==—> Sul=) . 110
31 2 S1(3) (110)
Thus S, is the arithmetic average of the wealths associated with the constant rebalanced

portfolios.

~

Finally, note the calculation of the portfolio byy; = (bny1,1 — bpyy) in this
example. Merely compute the inner product of the b column and S, (b) column in Table
1 and divide by the sum of the S,(b) column to obtain Bnﬂ . Note in particular that
the universal portfolio b, is not equal to the log optimal portfolio b*(F,) = (.55, .45)

with respect to the empirical distribution of the past.

A similar anaylsis can be performed on Commercial Metals and Kin Ark over the
same period. Here Commercial Metals increased by the factor 52.0203 and Kin Ark by
the factor 4.1276 (Fig. 5) . It seems that an investor wouldn’t want any part of Kin
Ark with an alternative like Commercial Metals available. Not so. The optimal constant
rebalanced portfolio is b* = (.65, .35), and the universal portfolio achieves S, = 78.4742

outperforming each stock. See Table 2 .
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Next we put Commercial Metals (52.0203) up against Mei Corp (22.9160) . Here
S =102.95 and S, = 72.6289 as shown in Figure 6 and Table 3 . In constrast to these
examples, IBM and Coca Cola show a lockstep performance, and, indeed, S, barely

outperforms the constituent stocks, as shown in Figure 7.

A final example crudely models buying on 50 percent margin. Suppose we have
4 investment choices each day: Commercial Metals, Kin Ark, and these same two stocks
on 50 percent margin. Margin loans are settled daily at a 6 percent annual interest rate.

The stock vector on the ¢th day is

x; = (zi, 2xi—1-7 i, 2y —1-71), (111)

r o= .000233, (112)

where z; and y; are the respective price relatives for Commercial Metals and Kin Ark on
day ¢ . Plunging on margin into Commercial Metals yields a factor 19.73, and plunging
into Kin Ark a factor 0.0000 4+ . Good as these stocks are, they can’t survive the down
factors induced by the leverage. But the random sample of the simplex of portfolios listed
in Table 4 reveals S, = 98.4240 , while the optimal rebalanced portfolio b* = (.2,.5,.1,.2)
results in a factor S; = 262.4021 . Clearly 98.4 beats the factor of 78 achieved when

margin is unavailable. Both factors exceed the performance 52.02 of the best stock.

We observe that S'n = 98.4 exceeds the factor S’n = 78.47 obtained for these
stocks when margin is unavailable. This is borne out by the fact that b* is positive
in each component, calling for a small amount of leverage in the a posteriori optimal

rebalanced portfolio.

9 The General Universal Portfolio.

If the best rebalanced portfolio b} lies in the interior of a boundary k-face then only &

stocks are active in the best rebalanced portfolio. Thus we expect to obtain the previous
Sy
Sy
each face. To accomplish this, we let ugs be the measure corresponding to the uniform
distribution on B(S) = {beR™ : >b; =1 ,b; = 0 ,ieS°} , where S C {1,2,...,m}

Thus pg puts unit mass on the |S|-dimensional face of the portfolio simplex.

bounds on with m replaced by &k . This is achieved if we start with some mass on
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Let p be the mixture of these measures given by

1
W= g 2 s (113)

where the sum is over all S # ¢ ,S C {1,2,...,m} .

The generalized universal portfolio now becomes

 bS.(b)u(db)
Butt = TG, (B)ulab) (114)
with

=1

To state the results we define J*)(F,) to be the k x k sensitivity matrix with
respect to the active stocks S ,| S | =k, where S is the smallest set of stocks such that
all optimal rebalanced portfolios b*(F') are in the interior of B(S) . Then

k-1

Su (k=11 2m\"7
A NIE AT (116)

n

will be the asymptotic behavior of S,,/S; .

10 Concluding Remarks.

We now try to be sensible and ask how the universal portfolio works in practice.
Of course the examples are encouraging, as the universal portfolio outperforms the con-
stituent stocks. However, we have ignored trading costs. In practice we would not trade
daily, but only when the current empirical holdings were far enough from the recom-
mended by, . (A rule of thumb might be to trade only if the increase in W is greater than

the logarithm of the normalized transaction costs.)

We are really interested in whether S, will “take off”, leaving the stocks behind.
We first discuss the target wealth S’ . The best rebalanced portfolio b*(F,,) based on

prior knowledge of the stock sequence xi, Xy, ..., X, yields wealth S¥ = e""» . Now S
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grows exponentially fast to infinity under mild conditions. For example, if one of the
constituent stocks is a risk free asset with interest rate r > 0, then W > In(14+7) >0,

for all n, and S} > (1+ 7)™ — oo . Since the universal portfolio yields

Sy = en(Wa 052 (117)

it follows that S,, will tend to infinity, and S,, will have the same exponent as S, , differing

only in terms of order (Inn)/n .

What state of affairs do we expect in the real world? Certainly we expect the
stock sequence to be of full dimension m for n slightly greater than m . However, we
don’t expect all stocks to be active. But we do expect that two or more stocks will be
active. This is important because it guarantees that the target growth rate W; will be
strictly greater than the growth rate of the constituent stocks. Consequently we believe

that the universal portfolio will achieve

A

i
Sn (e,)

exponentially fast, where S, (e;) is the wealth relative of the ith stock at time n . However,

— 00,1 =1,2,... m,

n may need to be quite large before this exponential dominance manifests itself. In
particular, we need n large enough that the difference in exponents between S; and the
stocks overcomes the O((Inn)/n) penalties incurred by universality. We conclude that
S, will leave the constituent stocks exponentially behind if there are at least 2 strictly

active stocks in the best rebalanced portfolio.
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