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Noiseless Coding of Corre lated Information 
Sources 

DAVID SLEPIAN AND JACK K. WOLF  

Abstracr-Correlated information sequences  . . .,X- 1,X0,XI,. . . and  
. . .,Y-,,Y,,Y,,.. . are generated by  repeated independent  drawings of 
a  pair of discrete random variables X, Y from a  given bivariate distribu- 
tion pxu(x, y). W e  determine the minimum number  of bits per  character 
Rx and  R, needed  to encode  these sequences  so that they can be  faithfully 
reproduced under  a  variety of assumptions regarding the encoders  and  
decoders.  The  results, some of which are not at all obvious, are presented 
as  an  admissible rate region 9  in the Rx-Ry plane. They general ize a  
similar and  well-known result for a  single information sequence,  namely 
Rx 2  H(X) for faithful reproduction. 

I. INTRODUCTION 

Notation and Problem Statement 

I N THIS PAPER, we generalize, to the case of two 
correlated sources, certain well-known results on  the 

noiseless coding of a  single discrete information source. 
Typical of the situations eonsidered is that depicted in F ig. 1. 
Here the two correlated information sequences . * .,X- 1, 
X0,X,, . . . and  . . . , Y- 1, Y,,, Y,, . . . are obtained by repeated 
independent drawings from a  discrete bivariate distribution 
p(x,v). The  encoder  of each source is constrained to operate 
without knowledge of the other source, while the decoder  
has available both encoded binary message streams. We  
determine the m inimum number  of bits per source character 
required for the two encoded message streams in order to 

-x-( ,xg .X,,“’ x “~01101~~~ ..x-:,x,*,x;l-. 
- ENCODER RATE RX 0 

E 

CORRELATED C 

SOURCES 0 
D  

“Ye, ,Y, .Y,;.. Y  “‘11000..~ ; ..Y-,*,Yo*8Y,p... 

ENCODER RATE RY 

Fig. 1. Correlated source coding configuration. 

HtXIY) H(X) H(X,Y) RX 

Fig. 2. Admissible rate region W  corresponding to Fig. 1  

ensure accurate reconstruction by the decoder  of the outputs 
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though each encoder sees only its own source. All these coder. The decoder then produces the message block X* as 
notions will be made precise in the following discussion. its estimate of X. 

First, however, let us review briefly some results for a 
single source that have long been known. Let X be a discrete 
random variable taking values in the set d = {1,2,. . . ,A}. 
Denote the probability distribution of X by px(x) = 
Pr [X = x], xe:d. Now let X = (X1,X,;. .,X,,) be a 
sequence of n independent realizations of X so that the 
probability distribution for the random n-vector X is given 
by 

A rate R is said to be admissible if for every E > 0 there 
exists for some n = n(E) an encoder %(n,Lexp (nR)J) and 
a decoder 9(n,Lexp (nR)]> such that Pr [X* # X] < a. 
Otherwise R is called inadmissible. Here the symbol Lx] 
denotes the largest integer not greater than x. We shall make 
frequent use of the following well-known theorem. (See, 
for example, [l, p. 431 or [3, p. 451 for equivalent results.) 

Theorem I: If R > H(X), R is admissible. If R < H(X), 
R is inadmissible. In this latter case there exists a 6 > 0 
independent of n such that for every encoder-decoder pair 
V(n,Lexp (nR)J, g(n,Lexp (nR)J), Pr [X* # X] > 6 > 0. 
Stated in less formal terms the theorem asserts that for 
q > 0 one can achieve arbitrarily small decoding error 
probability with block codes transmitting at a rate R = 
H(X) + rl; block codes using a rate R = H(X) - ye cannot 
have arbitrarily small probability of error. 

We now seek to generalize these notions to correlated 
sources. Let X and Y be discrete random variables taking 
values in the sets &x = { 1,2, * . * ,A,} and d, = { 1,2,. . . , 
A r}, respectively. Denote their joint probability distribution 
by 

Px(X) = Pr [X = x] = fi pX(Xi) 
i=l 

x = (x1,x2; * ‘,X”) E  d”, xi E  d, i = 1,2;**,n. 

Here, we introduce the symbol&” to stand for the collection 
of the A” different n-vectors x, each of whose components is 
a member of d. We regard X as a block of n successive 
characters from the output of an information source produc- 
ing characters independently with letter distribution Z+(X). 

While little can be said about individual letters produced 
by this information source, for large n the composition of 
blocks of n letters tends to be fixed. In a typical long block, 
one can expect about np,(l) occurrences of letter 1, about 
np,(2) occurrences of letter 2, etc. The probability of such a 
typical long sequence is, therefore, 

PT = Px(l)“Pxu)pX(2)nPxw. . .pX(~)nPxw 

= exp Lnfdl) log LN)I . . . exp CvA4 log h41 
= exp [ - nH(X)] 

where 

W W  = - $ pAi> log px(i> (2) 

is called the entropy of the source or of the random variable 
X. These simple observations lead to the useful, though 
imprecise, statement characterizing the long blocks of such 
a source: there are only N, = exp [nH(X)] likely blocks of 
length n; each has probability exp [-&f(X)]. This in turn 
suggests that we can accurately transmit the output of the 
information source using only R = (l/n) log N, = H(X) 
natural units (nats) of information per character and that at 
least this rate is required of any transmission scheme that 
allows accurate recovery of the source output. 

These intuitive coding notions can be made precise as 
follows. An encoder %(n,M) is any single-valued function 
i = f(x) from the n-vectors x of&” to the integers of the set 
A E (1,2;.. ,M). A decoder B(n,M) is a single-valued 
function x = g(i) from the integers i E A?’ to the vectors 
x E&‘. Associated with a source and a particular encoder 
and decoder pair are the rate R of the encoded messages 
defined by R = (l/n) log M , and the two random variables 
Z  = f(X) and X* = g(Z) called, respectively, the encoded 
message number and the decoded block. We think of the 
encoder as producing the integer Z  after observing the n 
source characters X. Then R units of information per source 
character suffice to communicate the value of Z  to the de- 
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pxu(x,y) = Pr [X = x and Y = y], x E&x, y Edy. 
(1) 

Next let (X,,Y,), (X,,Y,); . .,(X,,,Y,,) be a sequence of n 
independent realizations of the pair of random variables 
(X, Y). Denote by X the sequence X1,X2,. . *,X,, and by Y 
the sequence Y,, Y2,. . . , Y,. The probability distribution for 
this correlated pair of vectors is 

P,,(x,y) = Pr [X = x, y = Yl = I$ PXUCxi,Yi) C2) 
i= 1 

x = (x1,x2;. *,x,) E  dx” 

Y  = (Yl,Y2,***,Y"> E -Pern 

where J&‘~” is the set of A,” distinct n-vectors whose com- 
ponents are in&X and&r” is defined analogously. We regard 
X as a block of n-characters produced by one of two cor- 
related information sources. Y is the corresponding block 
produced by the other source. 

When it comes to encoding the outputs of these correlated 
sources a number of possibilities of interest present them- 
selves depending upon the information available to the en- 
coders and decoders. Sixteen cases that we shall consider 
are shown in Fig. 3. Each setting of the switches S,,S,,S,,S, 
yields a new case, It is convenient to associate with switch 
Si a state variable si taking the value 0 if the switch is open 
and the value 1 if the switch is closed, i = 1,2,3,4. The 
quadruple s1szs3sq, always listed in that order, will be used 
to specify the setting of the switches. Thus 0101 means that 
switches S, and S, are open while S2 and S4 are closed. 
The setting 0011 corresponds to Fig. 1. 

An X-encoder V~(n,s,,M,) is a single-valued function 
from dx” x d rn to the set of integers J&‘~ = { 1,2,. * . ,M,} 
of the form i, = f,(x,s,y). Similarly a Y-encoder %?&,sl. 
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j; X  ixE{~,2,-.,MX=Le” ““J} x 

1  - ENCODER T - DECODER 

Fig. 3. Sixteen cases of correlated source coding. 

H (X,Y) 

H(Y) 

H  (YiX) 

63 

MY) is a  single-valued function of the form i, = fY(slx,y) 
from dx” x d,” to the set ~?‘r = { 1,2,. . . ,Mr}. Decoders 
are defined analogously: Qx(n,s,,Mx,MY) is any single- 
valued function of the form x* = gx(ix,s,i,) from 
&x x JZr to dx” while a  Y-decoder 9Y(n,s3,Mx,My) is a  
single-valued function of the form y* = gY(s3ix,iY) from 
Jx x Ay tody”. 

. Associated with these coders and  decoders are rates 
R, = (l/n) log M ,, R, = (l/n) log M ,, and  random vari- 
ables I, = fx(X,s2 Y), I, = fy(slX,Y), X’K = gx(Z,,s,Z,) 
and  Y* = gr(s,Zx,Z,). Z, and  I, are called the encoded X- 
message number and the encoded Y-message number, respec- 
tively, while X* and  Y” are the corresponding decoded 
blocks. We  think of the two encoders as producing the 
integers Ix and  I, after n correlated source pairs X,Y have 
been  generated. R, units of information per source character 
suffice to transmit I, to the X-decoder: R, units suffice to 
transmit I, to the Y-decoder. The  decoders then produce the 
estimates X* and  Y* of the input sequences X and  Y. The  
role played by the switches S,,S,,S,,S, has been  incorpo- 
rated here into the arguments of various coding functions 
fx,fr, gx, and  gr. Thus, for example, if S2 is open, s2 = 0  
and  then Z, = &(X,0) depends only on  the X-sequence. 

We  are at last in a  position to define our problem. A pair 
of nonnegat ive numbers R,,R, is said to be  an  admissible 
rate point for the case s1s2s3sq if for every E > 0  there exists 
for some n = n(e) encoders %Tx(n,s,,Mx), %TY(n,sI,My), and 
decoders Sfx(n,sq,Mx,MY), ~Y(n,sJ,MX,My) with M , 7  
Lexp (nRx)J, M , = Lexp (nR,)], such that, Pr [{X” #  
X} u  {Y* #  Y}] < E. Otherwise, the pair (R,,R,). is 
called an  inadmissible ratepoint. We denote by 8  the closure 
of the set of admissible rate points, In this paper, we de- 
termine the admissible rate region g  for the 16  cases of 
F ig. 3  for the correlated source described. 

II. DISCUSSION OF RESULTS 

To  describe the admissible rate region L%?  for the various 
cases of F ig. 3, we must first introduce the marginal and  
conditional distributions of X and  Y, name ly, 

PAX) = c PXA~~Y) 
Y 

PAY) = F  PXY(X,Y) 

Px 1 Ax I Y) = P&?Y)lPAY), 

PY 1  x(Y I xl =  PxY(~~Y)lPx(~)~ 

PAY) + 0 

PAX) + 0 (3) 

Fig. 4. Admissible rate region. 

and the usual associated information-theoretic numbers 

fw?Y) = - c c PXY(X>Y) log PXYb,Y) 
x Y 

WX) = - Ix Px(X> 1% PAX> 
x 

WY) = - c PY(Y> 1% PY(Y) 
Y 

WYIW = - ~Px~~~~Pv,x~YI~~~~~P,,.~YI~~ 
x Y 

ffw I y> = - c PY(Y> c Px 1 Y(X I Y) 1% Px 1 Y(X I Y). (4) 
Y x 

The  regions are described in terms of these quantities. 
The  16  cases are covered by F igs. 4-9. Each figure shows 

a  region g  and  certain switching configurations that have 
$JI! as region of admissible rates. F igs. 5-7 each serve as well 
for the switch settings shown at the right of the drawing 
when every X in the figure is replaced by Y and  every Y is 
replaced by X, including those on  the small block diagrams. 

The  cases vary in novelty and  interest. For instance, the 
case 1111  shown in F ig. 4  contains nothing new. To  obtain 
the results shown there, we have only to regard the pair 
(X, Y) as a  new discrete random variable taking on  A,A, 
values and  apply Theorem 1. This will be  explained in full 
below. 

The  case 0011  shown in F ig. 8  is by far the most interest- 
ing and  novel of our results. Consider for a  moment  a  point 
near  the corner of W  given by R, = H(Y) + E, R, = 
ZZ(X 1  Y) + E, where E > 0  is thought of as very small. By 
Theorem 1, a  Y-encoder transmitting at this rate R, and a  
Y-decoder exist that allow the Y-source outputs to be  re- 
covered with arbitrarily small error probability. We  can 
suppose then that the joint X-Ydecoder shown has available 
the Y outputs. In view of the normal interpretation of 
H(X 1  Y) as the “uncertainty of X given Y,” it is most 
satisfying then that the X-encoder need  only produce a  
message stream with information rate R, = H(X ( Y) + E. 
But how can this be  done?  What  properties of X alone must 
the X-encoder examine and  transmit (for it cannot observe 
the Y source) at the rate H(X 1  Y) < H(X) to allow recon- 
struction of the X sequence when Y is at last seen at the 
decoder? The  answer is not clear. We  obtain our results by 
a  random coding argument which somewhat general izes 
that used in the usual noisy channel  coding theorem. Since 
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RY 
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Fig. 5. Admissible rate region. 
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Fig. 8. Admissible rate region. 
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A 

\ 
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Fig. 9. Admissible rate region. 

this is one of the principal contributions of the paper, we 
turn now to treat this case in some detail, then later proceed 
to establish more general machinery that allows treatment 
of the remaining 15 cases with more dispatch. 

III. THE CASE 0011 
In this section we prove the following. 
Theorem 2: 

Rx = fwl y> + $9 &X > 0 
RY = H(Y) + EY, Ey > 0 

is an admissible rate point for the case 0011. 
(5) 

In the course of the proof, we shall need the quantities 

Py I AY I 4 = Pr [Y = Y I X = x1 = fi py 1 AY, I ~3 (6) 
i=l 

with notation as in (l)-(3). We shall also use 

Z(X,Y) E H(X) + H(Y) - H(X,Y) = H(X) - H(X 1 Y) 
= H(Y) - H(Y 1 X) 

with the H given by (4). 
(7) 

The concepts behind the formal proof that follows are 
these. By Theorem’l, we know that RY is large enough to 
allow nearly error-free transmissions of the Y-sequences. 
We shall accordingly think of the n-vector Y as known as the 
decoder. 

Now, from the fact that pxy(x,y) = py lx(y I x)px(x), 
we can think of the Y-sequences of the correlated source as 
being generated by applying successive characters of the 
X-sequence as inputs to a discrete memoryless channel with 
transition probabilities py I x(y 1 x). The coding theorem 
for such a channel tells us that for large n and any E -> 0, 
there exists a decoder and a code x1 composed of it4 = 
Lexp [n(Z(X,Y) - s)]J n-vectors x11,x11; * *,xlM that can 
be used as inputs to this channel and decoded with little 
error probability when the output Y is seen. Now it turns 
out that we can find many other codes for this channel, say 
3-23-3, * ’ * 3-M’, each with its own decoder, each of the 
same size as S1, and each enjoying the same small prob- 
ability of error. Our scheme then for encoding the X- 
sequences of our correlated sources X and Y is to transmit 
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to the decoder the index of the first code in the series Z1, 
32, * * * 3 TM, that contains X. The X-Y decoder can then use 
the decoder appropriate for that code pi of the pr , *(y 1 x) 
channel to determine X. There are exp {n[H(X) + r]} 
highly likely X sequences, so that if the codes %“l,%z,* * *, 
TM, were disjoint, it would require 

M’ = exp {n[WX> + q]>/ew {4&KY) - ~11 

= exp WV I Y) + 4 1 
code books to be certain that X was contained in one of 
them. Although the codes are not disjoint, we shall use just 
this many. 

Let us turn now to the formal proof. Let it be a positive 
integer, later to be chosen very large, and set 

Mr = Lexp (nRr)J (8) 

with the R’, given as in (5). X- and Y-encoders for the case 
at hand are functions ix = f&z) from &x” to Ax = 
w; * *, Mx} and iy = f&) from dy” to &y = { 1,2, * * * , 
My}. A decoder is a pair of functions x* = gx(ix,ir) from 
Mx x JZy to dx” and y” = gr(ix,ir) from &x x JZy to 
dr”. In the proof of Theorem 2, it suffices to restrict our 
attention to coding and decoding functions of a very special 
form. 

To describe the Y-encoder, we must first define the list 
F(.s,n) of typical Y-sequences of length 12. Here E > 0 is a 
parameter that will stay fixed throughout the rest of this 
section. Let k be the smallest integer greater than JAY/e 
where as before the Y alphabet is dy = { 1,2, * * * ,A r}. Let 
fi(y) be the number of occurrences of the integer i among 
the list of components y1,y2,. * * ,yn of y. A Y-sequence y is 
contained in F(s,n) if 

vi(Y) - npr(Ol < kJ~pY@)Cl - Pr(i>l, 

i = 1,2;**,Ay. (9) 

If (9) is violated for any i, y is called atypical and is not a 
member of F(&,n). The following facts about typical se- 
quences are well-known. (See, for example, [2, pp. 14-161 
for a very readable account.) 

Theorem 3: 1) Pr [YE F(V)] > 1 - E. 2) There exists 
an A > 0 such that for every y E F(s,n) 

exp [ - nH( Y) - A&] 

c py(y) < exp [ - nH( Y) + A&$]. 

Here A is independent of y1 and E. 3) The number N of 
members of F&n) is e”ra(r)+an(e)l, where 

lim 8,(s) = 0. 
n-r03 

We now assume that it is chosen sufficiently large so that 
8,(e) < sy of (5). Then the number of sequences y in 
Q,n) satisfies 

N I My (10) 

with Mr given by (5) and (8). 

415 

The Y-encoder for the correlated sources X and Y is 
constructed as follows. Number the vectors of F(s,n) to 
obtain the list y1,y2, * * * ,y,. Adjoin to this sequence any 
MY - N other vectors of dr” (not necessarily distinct), 
labeling them ~~+~,y~+~,***,y~~. We denote the list 
Y19Y29’ * ‘PYMU by 2. Now define the Y-encoder by 

smallest index i such that y = yi, 
fr(Y) = (1, 

ifyE 
ify#s. 

(11) 
The mapping is from d rn to 4, as required of a Y-encoder. 

The X-encoders are of a very special form. Let pi = 
lxilJi2, * ’ *,x~~} be a list of M vectors ofdx”, i = 1,2; * *, 
Mx. The vectors in these lists need not be distinct. We call 
each list Zi an X-code and we call the collection ?Z of Mx 
X-codes an X-supercode. We shall specify how M is to be 
chosen later. The X-encoders we consider are of the form 

fx(x) = 
{ 

1, ifx#X 
smallest index i such that x E %i, 

ifxE%. 

To define the decoding functions we set 

(12) 

h&&) = Yiy (13) 

for all (&Jr) E Ax X 4,. The X-decoder is somewhat 
more complicated. Denote by j(i,,i,) the smallest index j 
such that 

pY 1 X(Yiy I xixj) 2 pY 1 X(Yly I Xixd3 
k = 1,2;* *,M. (14) 

Then the X-decoder is given by 

C&dd = xix,j(ix,iy)9 (15) 

for all (ix,ir) E Ax X 4,. 
As in the introduction, we introduce the random variables 

cr = fxm 

Ir = fr(Y) 

x” = .!dl,Jr) 

Y” = grVxJr)+ 

We wish to show that for every E’ > 0 there exists an 
X supercode ?E such that 

P&E) = Pr [{X* # X} u {Y* # Y}] < E’. (16) 

We cannot exhibit such an X-supercode explicitly, but we 
will establish the existence of one by the now familiar 
random coding argument. We average P,(.%) over an en- 
sembles d of X-supercodes and show that this average, 
P,(X), is less than a’. At least one member of the ensemble 
must then satisfy (16). 

A supercode of d is specified by particular values of the 
M,M random vectors Xij, i = 1, * * * ,M,, j = 1, * * * ,M. 
The values lie in .&‘x”. The probability structure of d is 
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specified by for all x E Y&n). Here A’ > 0 is independent of n and E. 
We write (24) as 

(17) 

where 

(18) 

in the notation of (2) and (3). Stated otherwise, the vectors 
of the supercode are drawn component by component 
independently from the marginal px(x) of the given joint 
distribution pxr(x,y). 

Suppose now all supercodes are enumerated and listed 
-cp), OJ(2) 3 . . . . The average error probability we seek is 

P,(%) = z Pr (9” = z(j)) 
j 
* Pr [{X* # X) u {Y* # Y> I Cl = g(j)] 

= c Pr [{X* # X} u (Y* # Y> and .% = %(j)]. 
j 

This last sum can be interpreted as the probability P, that 
(X*,Y*) # (X,Y) in the joint experiment of choosing an 
X-supercode X from d and independently choosing an X 
and Y from pxy(x, y) to use with that supercode. We proceed 
to upperbound this quantity. 

Let 

PI = Pr [Y$LZ] 

P2 = Pr [X#%] 

P, = Pr [YES, XE.%, X* # X]. 

Then clearly 

P&x) I P, + P, + P,. 
That 

P, < E 

(19) 

(20) 

(21) 
follows directly from statement 1) of Theorem 3 about 
typical sequences and from the fact that 9 includes 9-&n). 

We now show that if n is large enough and 

M  = Lexp M W , Y) - .)+I >I, (22) 

where we assume Z - $ex > 0, then 

P, < 2E. (23) 
We first note that 

P,=Pr[X$%] =C,Pr[X=x]Pr[X$%lX==] 
x 

= c P,(x)[l - P*(n)]= 
x (24) 

with Px(x) given by (18). From Theorem 3, the set of X- 
sequences of length n can be divided into two parts, one 
~~‘(.s,n) of probability < E and a disjoint part rx(e,n) such 
that 

exp l [ 
-n H(X)fA’ 

J II 5 p&9, (25) 
nE 

< [l - exp (-n [H(X) + $LJ]]MMx 

I [l -exp(-n[H(X)+-$]]IMMx+s 

=z+&. (26) 
Now 

log2 = M M ,log [l - exp (-n [H(X) + -+])] 

5 - exp (n[W ,Y> - 3+1) exp {nW<x I Y) + 4) 

- exp 
1 [ 

-n H(X)+A’ 
J II 

= - exp (n [iex - -$])n 

on using (5), (7), (8), and (22). Thus, for any fixed E, Z  
approaches zero as n becomes large. We can therefore 
choose n sufficiently large to make Z c E and then, from 
(26), (23) is true. 

For the remaining term in (20) we have 

P, = Pr[YE9,XE%,X* #Xl 

~2 Pr [XES,X* # X] 

= ~P,,(x,y)Pr[XE.%,X* #XIX= x, Y= y] 

= ; P,Y(~,Y)&~,Y). (27) 

Here 

XE~i,X* #X1X=X, Y=y] 
and the term i = 1 is to be interpreted as Pr [XE TI, 
X*#XIX=x,Y=y].Now 

&Y) = 2 El - p.d~)](‘-‘)~ jEl B&x,Y) (28) 

with 
Bij(X,Y) = Pr [Xi, # X, Xi2 # X,’ * ‘,Xij- 1 # X, Xij = X, 

X”#XIX=x,Y=y]. 
The terms Bil are to be interpreted as Pr [X,, = x, 
X*#XIX=x,Y=y].But 

B,j(X,Y) = [l - P~(x)]‘-‘pX(x)c,j(x,Y) (29) 
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with Cij(X,y) I Pr [Py 1 X(JJ 1 Xi=) 2 Py 1 X(JJ 1 x), for some 
u # j 1 91 where 9 - {Xi, # X; * *,Xij-1 # x, Xij = X, 
x = x, Y = y}. 

cijtx9Y) s Pr [ U {PY 1 x(Y I &a> 2 p aZj 
Y 1 x(Y I 41 I 91 

I [ Jj Pr PY I xtY I xicJ 2 PY 1 x(Y I XI I 911 p (30) 

where 0 I p I 1. Here we have used the now common 
union bound, (see [I, p. 136]), 

But if CI > j 

Pr Cpy I x(~ I Xi,> 2 py I AY I 4 I 91 

= Pr[PyIx(YIXi,) 2 Py~x(YlX)lx= GY=Yl (31) 

while if a c j 

PrCPy~x(YlXi,)~P~~x(YlX)l~l 

=PrCPyIx(~IX,)2PyI.(~I~)IXi,Z~~X=~~Y=~l 

~~~[~y~x~YI~i,~~PY~x~YI~~~Xi~f~IX~~~Y~~l 
Pr[Xi, # XIX= X, Y=y] 

S a-‘PrCPy~x(YIXiJ ~PYIx(YI~)IX=-CY=YI 
(32) 

where 

a G Pr [Xi, # x I X = x, Y = y] = [l - P,(x)] I 1. (33) 

Thus, (30)-(32) give 

Cij(x,Y> 5 [{<.I’ - 1)~~ ’ + M - j> Pr CPY 1 X(Y I XiJ 

2 P,,xbwIX= x, y=Yllp 

= [<j - lb-’ + M - j]” [g PxhJ]” 

where the sum is over the set of values of Xior for which 
Py 1 x(~ I XL& 2 Py I& I 4. Since on this set PY 1 AY I d/ 
PyIx(yIx) 2 l,wehave 

C,j(X,y) I [(j - 1)~~ ’ + M - f” 

for any s 2 0. 
Let us now assemble these results. Equations (27)-(29) 

and (34) give 

P, < c P,y(x,y) MCx,(i-l)m 
.=Y i=l 

* j$l a’-‘Px(x)[(j - l)u-’ + M - j]” 

(34) 

In the Appendix it is shown that 

&l[(j - l)a-l + M - j]” s %!- 
i=l j=l 

Insert this bound for the sums into (34) and write Pxy(x,y) = 
Px(x)Py 1 x(y I x). There results 

P, I c PxW’Y I X(Y I +-psMp 
XY 

I 1 P * c PXWPY 1 x(Y I x’)s * x’ 
Choose s = l/(1 + p) to obtain 

[ 1 l+P 
P3 5 T = MP c c Px(x)Py , x(y I ~)l’(l+~) - (36) 

Y x 
The quantity T is well known to information theorists. It 
plays a central role in the Gallager bound for error prob- 
ability of a noisy memoryless channel. Recalling (6), (18), 
and (22), we have 

* 
[ [ 

1+p ” 
7 ; PX(4PY 1 x(Y I wl+p) 1 1 

I exp - np 
1 [ 

1 V(p) - Z(X,Y) + ; I) . P 

Here 

1 l+P 
c, PX(4PY 1 x( y I xF+p) 

is seen to be analytic in the neighborhood of p = 0, and 
indeed V(0) = 0. The function E(p) = V(p)/p is also 
analytic in this neighborhood and by L’Hbpital’s rule and a 
straightforward calculation one finds 

E(0) = fz 
dp p=o 

= - c Py(Y) 1% Py(Y) 
Y 

+ c Pxy(& Y) 1% PY 1 A Y I 4 
XY 

= Z(X,Y) 

by (4) and (7). 
Since E(p) is analytic at p = 0, there exists a p. > 0 

such that IE(p,) - Z(X,Y)I < cX/4 whence (36) becomes 

P, _< exp ( -npoQ4). 

It is now seen that by choosing y1 sufficiently large, 
P3 < E. Combined with (23), (21), and (20), this shows that 
P, I 4.5. Now choose E = ~‘14. We have then shown that 
P,(.%) < E’. There must therefore exist a code in the en- 
semble for which (16) holds. Thus Theorem 2 is proved. 

IV. DETERMINATION OF THE REGIONS W 

Table I lists twelve theorems whose applications in con- 
nection with Fig. 10 give immediately the admissible rate 
region W for the 16 cases. In Table I, the symbol x for the 
state of a switch means that the theorem holds both when 
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H1X.Y) 

H(Y1 

HCYIXI  

A(oxxx1 DcKal 

- B(xoxxl 

HCXIYI  H(X) H(X,Y) RX  

Fig. 10. Lines and points of Table I. 

TABLE I 
THEOREMS TODETERMINE W  

Theorem 
Slhw4 Name Theorem 

0xXx 
xoxx 
xxox 
xxx0 
xxxx 

lxx1 
x11x 
xxlx 
xxx1 
xxxx 

xxxx 

xxxx 

It is necessary that: 

t 
Rx 2 H(X Y) 
Ry 2 H(Y X) 

E 
RY 2 H(Y) 
Rx 2 H(X) 

E Rx + Ry 2 H(X,Y) 
It is sufficient that: 

a Rx = 0 RY = H(X,Y) + exr 
b Rx = H(X,Y) + E.W Ry = 0 

: 
Rx = H(X) + EX 
Rx = H(XI Y) + EX 

RY = H(YIX) + ey 
RY = H(Y) + EY 

e Rx = H(X) + EX RY = H(Y) + ey 
~X,~Y&XY > 0 

Bit stuffing: 
f (Rx,&) E 9 => (Rx + 6x, RY + 8,) E 8 

6x, By 2 0 
Limited time sharing: 

g If (R,,R,) E 9, (Rx’,Rr’) E 9 and 
Rx + R,;, = y(X,Y) and Rx‘ + Ry’ = H(X,Y), 
;e,p (Rx ,RY 1 E W, 

x = IRx + (1 - l)Rx’ 
Rr” = 1Ry + (1 - rZ)Ry’, 05151 

the switch is open and when the switch is closed. For 
example, Theorem A asserts that if switch S, is open the 
9x coordinate of an admissible rate point must be at least 
as large as ZZ(X I Y). Theorem E asserts that the coordinates 
of all admissible rate points, independent of the switch 
settings, must satisfy R, + R, 2 ZZ(X,Y). Theorem a says 
that if switches S1 and S, are closed, then R, = 0, R, = 
H(X,Y) + sXY is an admissible point for every cxY > 0. 
Since 9 is defined as the closure of the set of admissible 
rate points, the theorem also asserts that Rx = 0, R, = 
H(X,Y) is in 9. 

On Fig. 10 certain lines and points are labeled with the 
names of theorems of Table I. The corresponding switching 
states are affixed. These points and lines can be used along 
with Theorems f and g to determine immediately the 
boundary of W  for any of the 16 cases. The bit stuffing 
Theorem f then shows that the interior of the boundary can 
be filled in to obtain 9’. We give several illustrations. 

1) For the switch setting 1011, we see at once from 
Table I, scanning the columns of switching states, that 
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Theorems B E a c d e apply. The first two show that W  can- 
not extend below the line labeled B on Fig. 10 nor below the 
line labeled E there. The next four applicable theorems show 
that the points a, c, d, and e all lie in 9. Theorem f then 
shows that points above a on the R,-axis are in 9 as well 
as all points on B to the right of c. Theorem g shows that 
the line segment aC is in 9. The region as given in Fig. 5 is 
thus established. 

2) For the setting 0001, Table I shows that A B C E d e 
all apply. Locating the lines ABCE on Fig. 10, we see that 
8 can neither extend to the left of line A nor below line C. 
The point d is in 98, and by Theorem f so is every point to 
the right of it on line C and every point above it on line A. 
The region 9 of Fig. 7 is thus established. 

Many of the theorems of Table I are trivial and we do 
not belabor them. 

Theorem E: The pair of random variables X,Y can be 
regarded as a single random variable 2 taking AxA y values. 
The entropy of this variable is H(Z) = ZZ(X,Y). Any en- 
coding of the pair (X,Y) as described by Fig. 3 can also be 
regarded as an encoding of Z  by indexing the MxMy 
possible pairs of values (ix,iy) for Ix and Zy and taking this 
index of (Z,,Z,) as the value of I,. If (R,,R,) were admissible 
and R, + R, < H(X,Y), say R, + RY = H(X, Y) - 6, 
the construction just mentioned would show the existence 
of Zcodes with M, = MxMy = Lexp (nR,)JLexp (nR,)l I 
Lexp [n(R, + R,)] J = Lexp [n(ZZ(X, Y) - S)]] values for the 
channel symbols that had error c E. But this contradicts 
Theorem 1 as applied to the variable Z. Q.E.D. 

Theorem A: Let switch S1 be open and suppose that 
R, = ZZ(X 1 Y) - 6 and RY = R2 is an admissible rate 
point. We first show that this implies that R, = H(X I Y) - 
6, RY = H(Y) + 6/2 is also an admissible rate point. 

Let %x,%‘y,9x,9y be encoders and decoders that employ 
coded message rates R, = ZZ(XIY)-6 and R,=R, 
and that achieve error probability E. We replace Vy by an 
encoder Vy’ that produces coded messages at a rate R2 = 
H(Y) + 6/2 by using a list of typical Y sequences. We 
know by Theorem 1 that for large enough it such an encoder 
and a corresponding decoder gy’ exist, ones that reproduce 
the Y sequence with arbitrary accuracy. We now consider a 
new decoder gy” consisting of gy’ followed by % ‘, and 
gy. The scheme %x,~y’,9x,9y” signals at rates Rx = 
ZZ(X I Y) - 6 and RY = H(Y) + 6/2 with error prob- 
ability c E. But R, + RY = H(X I Y) + H(Y) - 6/2 = 
ZZ(X,Y) - 6/2, contrary to Theorem E. Therefore, we must 
have Rx 2 H(X I Y) for an admissible point. 

Theorem B: Theorem A with X and Y interchanged. 
Theorems C and D: Follow directly from Theorem 1. 
Theorem a: Theorem 1 applied to Z  = (X,Y). 
Theorem b: Theorem a with X and Y interchanged. 
Theorem c: Theorem 2. 
Theorem d: Theorem 2 with X and Y interchanged. 
Theorem e: Follows from Theorem 1. 
Theorem f: This theorem follows from the simple ob- 
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servation that for any encoder,  say % ‘&z,s,,M,), mapp ing 
elements of dx” x d,” onto integers of the set Ax = 
w,* * *Y Mx} we can always trivially increase the range of 
the mapp ing by increasing 1M, (and hence R,). The  new 
values of the enlarged set Ax’ never occur as values of Ix 
in this new mapp ing and  so the decoder  can be  defined 
arbitrarily for these values. The  error probability remains 
unchanged.  

Theorem g: A result somewhat stronger than Theorem 1  
is the following. If R > H(X), then for every E > 0  there 
exists an  n,,(s) and  an  encoder  %?(n,,Lexp (nOR)J and a  
decoder  a(n,,Lexp (n,R)_I) such that Pr [X* #  X] < a. 
Furthermore, for each integer II > IZ~ there exists an  en- 
coder %?(n,Lexp (nR)J) and a  decoder  B(n,Lexp (nR)J) such 
Pr [X* #  X] < E. This result is implicit in proofs of 
Theorem 1  that compute explicit bounds for error prob- 
ability such as the one  given by Jelinek [3, sec. 5.2, p. 861. 
Examination of Section III then shows that a  correspond- 
ingly strengthened statement of Theorem 2  is also possible: 
if R, = H(X 1  Y) + sx, RY = H(Y) + sr then for every 
E > 0  there exist coders and  decoders for every IZ greater 
than some no(s) for which Pr [X* #  X and  Y* #  Y] < E. 
We  call a  rate point (R,,R,) strongly admissible if for every 
E > 0  and  all sufficiently large 12  there exist encoders and  
decoders using block length n  for which Pr [X* #  X and  
Y* #  Y] c E. When  points a, b, c, d, or e  are in &?‘, i.e., 
when the switch settings are appropriate, they are strongly 
admissible rate points. 

For strongly admissible rate points (R,,R,) and (RX’,RY’), 
Theorem g  is shown as follows. There are encoders and  
decoders for all block lengths IZ greater than n,(.s/2) that 
use encoded message rates R, and RY with error < ~12. 
Similarly there are encoders and  decoders for all block 
lengths IZ’ greater than no’(s/2) that use encoded message 
rates Rx’ and Ryf with error c&/2. Let A, 0  I 3. I 1, be  
rational and  choose n” so large that n  = An” and n’ = 
(1 - A)z>~” are both integers and  n 2 n,, and  n’ r no’. Now 
encode X - Y sequences by alternately using first block 
length n and the code with rate (R,,R,) and then block 
length n’ with the code of rate (RX’,RY’). This operation can 
be  regarded as the use of a  single block code of length 
n” = n + n’. For this new code, M ,” = M ,M,’ = 
Lexp (1n”R3JLexp [(l - A)n”R,‘] J I Lexp (n”Rx”)]. As in 
the proof of Theorem f, we can artificially increase Mx” so 
that M,” = Lexp (n”Rx”)l. A similar calculation holds for 
M,“. The  error probability for this n” code is less than 
1  - (1 - ~12)~ = E - (~/4)~ 5  E. This establishes Theorem g  
for rational 1. But W  was defined as the closure of all ad- 
m issible points and  since the rationals are dense in the 
reals, Theorem g  is established. 

A stronger form of Theorem g  is indeed true, for exam- 
ination of F igs. 4-9 shows that W  is convex for all 16  cases. 
Thus we have the following theorem. 

Theorem h: If (R,,R,) E 9  and  (RX’,RY’) E W , then for 
every ;1,0 I 1  I l,(RX”,RY”) E 93 where Rx” = AR, + 
(1 - ;l)RX’,RyN = AR, + (1 - A)Ry’. 
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V. COMMENTARY 

Many topics for further research on  joint coding of 
correlated sources suggest themselves. We  mention a  few. 

How does the foregoing extend to N correlated sources 
instead of two? The  number  of switch settings grows 
rapidly with N. Many cases are easy extensions of our 
results for N = 2, but basically new situations arise too. 
For example, when N = 3  consider the case where the X 
decoder  sees I, and I,, the Y decoder  sees Iy and the Z  
decoder  sees I, and  I,. What  is the admissible rate region 
then if the encoder  sees all three message sources? 

How does the foregoing extend to a  rate-distortion 
theory of correlated sources? The  probability-of-error 
criterion is then replaced by more general  measures of 
decoder  output fidelity. A rate-distortion theory would 
permit a  generalization from discrete-valued to continuous- 
valued random variables. 

The  design of block codes of given length yt to have small 
error probability is a  more difficult and  more interesting 
problem for correlated sources than for a  single source, 
where the problem is solved by providing a  list of typical 
sequences. Here, in cases such as 0011  one  wants to take 
advantage of the known correlation of the sources. Are 
there better methods than timeshar ing to achieve rates 
along the line E between c and  d?  

What  is the theory of variable-length encodings for 
correlated sources? How does one  general ize the Huffman 
code, say, in the case 0011  to encode X sequences of length 
n with fewest bits on  the average when R, = H(Y)? 

How does the theory extend for correlated sources that 
are not independent drawings of pairs of correlated 
variables? 

These are but a  few of the many interesting problems to 
be  solved in this area. 
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APPENDIX 

Here we establish the inequality (35). Jensen’s theorem (see, 
for example, [l, (4.4.4) and  (4.4.5), p. 851)  asserts that if g(x) is 
convex up  for a  I x I b, i.e., if g”(x) 5  0, for a  5  x I b, 
then 

$ Pj.dxj) 5 9 (f. Pjxj) 

wherea I x1 I x2-.’ I x, I band 

M  

&$=l 
1 

withpj 2  0,j = 1,. . a, M. We  apply this theorem to the following 
function 
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which is convex up for x 2 0, taking 

1-U j-1 pj=-a 
1 - aM 

xj = [(j - l)a-l + M  - j] 

and performed some algebraic simplification. It follows then that 

,zl d-1 [(j - l)a-’ + M  - j]” 5 

2 l - aMMP 
1-U 

(A-2) 

j = 1,2,. . .,M 

with a given by (33), so that 0 < a < 1. We find 

$$ jfl a’-‘[(j - 1)~~’ + M  - j]” 

5 s jfl &‘[(j - l)a-’ + M  - j] 1 ’ 

= (M - av1)$l a+’ + (a-’ - 1) j1 ju’-‘I]’ 

M1 - aM-1 ’ 
l-u * II 

Here we have evaluated the sums using the two formulas 

2 ja.i-1 - 

j=1 - $ (’ ;““,“) = 

1 - (M f l)aM + Mu”+’ 
(1 _ a)2 

(A-1) 

sinceif 0 < cI < 1, [l - a”-‘I/[1 - a”] < 1. 
Returning to (35), from (A-l) we have, on replacing M  by Mx 

and a by a”, 

MX 
C aM(l-l) = ‘,--‘;z. 

i=l 

Combining this with (A-2) gives 
M X  
C p(f-1) Jil al-'[(j - 1)~~’ + M  - j]” 

i=l 

I 1 - UMMXl- UMMP 
l-UM l-a 

1 I - M P  = z) (35) 
l-u X 

on using the definition (33) and the fact that 1 - aMMx I 1. 
Q.E.D. 

REFERENCES 
[l] R. G. Gallager, Information Theory and Reliable Communication. 

New York: Wiley, 1968. 
[2] R. Ash, Information Theory. New York: Interscience, 1965. 
[3] F. Jelinek, Probabilistic Information Theory. New York: McGraw- 

Hill, 1968. 
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Abstract-A new class of lower bounds to rate-distortion functions of 
stationary processes with memory and single-letter vector-valued distor- 
tion measures is derived. This class is shown to include or imply all other 
well-known lower bounds to rates of such sources and distortion measures. 
The derivation is based on the definition and properties of the conditional 
ratedistortion function. In addition to providing a unified and intuitive 
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approach to lower bounds, this approach yields several interesting rela- 
tions among conditional, joint, and marginal rates that are similar to 
and sometimes identical with the analogous relations among the corre- 
sponding entropies. 

I. INTRODUCTION 

T HE evaluation of rate-distortion functions is most 
difficult for precisely that class of sources for which the 

theory is potentially most useful-sources with memory. 
This has led during the last few years to the development 
and study of several lower bounds to rate-distortion func- 
tions of various classes of processes with memory. The best 


