Linear Gaussian Channels and
Delayed Decision Feedback Sequence Estimation

Shane M. Haas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
I – Motivation

II – The Equivalent Discrete-Time Channel Model

III – Maximum Likelihood Sequence Estimation (MLSE)

IV – Zero-Forcing Decision-Feedback Estimation (ZF-DFE)

V – Delayed Decision-Feedback Sequence Estimation (DDFSE)

VI – Performance

VII – Conclusions
I – Motivation

- **THE PROBLEM:** Detection in the presence of intersymbol interference

- **SOME SOLUTIONS:**

 - **MLSE** – optimal detector

 - **ZF-DFE** – suboptimal detector

 - **TH Precoding** – ZF-DFE at transmitter

 - **DDFSE** – hybrid of MLSE and ZF-DFE
Transmitter and Channel Composite Response, $h(t) = p(t) * g(t)$

Equivalent Discrete-Time Channel Response, $f(D)$

Equivalent Complex Baseband Channel Response, $g(t)$

$\pi e^{2\pi f r(t)}$
\[y(D) = Af(D)x(D) + z(D) \]
III – Maximum Likelihood Sequence Estimation (MLSE)

- The optimum detector is the minimum distance rule:

\[
\hat{x}(D) = \arg\min_{x(D) \in \mathcal{X}[D]} \| y(D) - Af(D)x(D) \|^2
\]

\[
= \arg\min_{x(D) \in \mathcal{X}[D]} \| \frac{1}{A} y(D) - \left[f(D) - 1 \right] x(D) - x(D) \|^2
\]
• EXAMPLE 1: FIR Channel

– Given:

* Input Alphabet: $\mathcal{X} = \{-1, +1\}$

* Channel: $f(D) = 1 - 1.5D + 0.5D^2$, $A = 1$

* Output: $y(D) = 2.1 - 2.9D$

– Find: Most likely transmitted sequence:

$x(D) = x_0 + x_1 D$
| Transmitted Sequence | State Seq. (X_0, X_1, X_2) | Filter Output s_0 | Filter Output s_1 | Distance Metrics $|s[0] - y[0]|^2$ | Distance Metrics $|s[1] - y[1]|^2$ | Distance Metrics $|s - y|^2$ |
|---------------------|--------------------------------|-------------------|-------------------|----------------|----------------|----------------|
| x_{-2} | x_{-1} | x_0 | x_1 | s_0 | s_1 | | | | | |
| -1 | -1 | -1 | -1 | (1,1,1) | 0 | 0 | 4.41 | 8.41 | 12.82 |
| -1 | -1 | -1 | 1 | (1,1,2) | 0 | 2 | 4.41 | 24.01 | 28.42 |
| -1 | -1 | 1 | -1 | (1,2,3) | 2 | -3 | 0.01 | 0.01 | 0.02 |
| -1 | -1 | 1 | 1 | (1,2,4) | 2 | -1 | 0.01 | 3.61 | 3.62 |
| -1 | 1 | -1 | -1 | (2,3,1) | -3 | 1 | 26.01 | 15.21 | 41.22 |
| -1 | 1 | -1 | 1 | (2,3,2) | -3 | 3 | 26.01 | 34.81 | 60.82 |
| -1 | 1 | 1 | -1 | (2,4,3) | -1 | -2 | 9.61 | 0.81 | 10.42 |
| -1 | 1 | 1 | 1 | (2,4,4) | -1 | 0 | 9.61 | 8.41 | 18.02 |
| 1 | -1 | -1 | -1 | (3,1,1) | 1 | 0 | 1.21 | 8.41 | 9.62 |
| 1 | -1 | -1 | 1 | (3,1,2) | 1 | 2 | 1.21 | 24.01 | 25.22 |
| 1 | -1 | 1 | -1 | (3,2,3) | 3 | -3 | 0.81 | 0.01 | 0.82 |
| 1 | -1 | 1 | 1 | (3,2,4) | 3 | -1 | 0.81 | 3.61 | 4.42 |
| 1 | 1 | -1 | -1 | (4,3,1) | -2 | 1 | 16.81 | 15.21 | 32.02 |
| 1 | 1 | -1 | 1 | (4,3,2) | -2 | 3 | 16.81 | 34.81 | 51.62 |
| 1 | 1 | 1 | -1 | (4,4,3) | 0 | -2 | 4.41 | 0.81 | 5.22 |
| 1 | 1 | 1 | 1 | (4,4,4) | 0 | 0 | 4.41 | 8.41 | 12.82 |
• The Viterbi Algorithm

− State: \(\mathbf{X}_k = (x_{k-1}, \ldots, x_{k-\eta}); \ \eta = \text{deg}\{f(D)\} \)

− Branch metric for \(\mathbf{X}_k \) and \(\mathbf{X}_{k+1} \)

\[
|y_k - \sum_{i=0}^{\eta} A f_i x_{k-i}|^2
\]

\[
= |y_k - \sum_{i=1}^{\eta} A f_i x_{k-i} - Ax_k|^2
\]

\[
\propto \left| \frac{1}{A} y_k - \sum_{i=1}^{\eta} f_i x_{k-i} - x_k \right|^2
\]

− For each next state, choose smallest path metric
EXAMPLE (cont.): FIR Channel

\[f(D) = 1 - 1.5D + 0.5D^2, \quad A = 1, \]
\[X[k] \]
\[(x[k-1],x[k-2]) \]

<table>
<thead>
<tr>
<th>State Number</th>
<th>State 1</th>
<th>State 2</th>
<th>State 3</th>
<th>State 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-1,-1)</td>
<td>(-1,-1)</td>
<td>(-1,-1)</td>
<td>(-1,-1)</td>
</tr>
<tr>
<td>2</td>
<td>(+1,-1)</td>
<td>(+1,-1)</td>
<td>(+1,-1)</td>
<td>(+1,-1)</td>
</tr>
<tr>
<td>3</td>
<td>(-1,+1)</td>
<td>(-1,+1)</td>
<td>(-1,+1)</td>
<td>(-1,+1)</td>
</tr>
<tr>
<td>4</td>
<td>(+1,+1)</td>
<td>(+1,+1)</td>
<td>(+1,+1)</td>
<td>(+1,+1)</td>
</tr>
</tbody>
</table>
EXAMPLE (cont.): FIR Channel

\[
y(D) = 2.1 - 2.9D
\]
• Advantages of MLSE:

 – Optimal in terms of error probability

 – VA provides recursive implementation

• Disadvantages of MLSE:

 – Complexity is exponential, i.e. $|\mathcal{X}|^\eta$

 – Does not exist for IIR channels
IV – Zero-Forcing Decision-Feedback Estimation (ZF-DFE)

- Decision Rule:

\[\hat{x}_k = \arg\min_{x \in \mathcal{X}} \left| \frac{1}{A} y_k - \sum_{i=1}^{\eta} f_i \hat{x}_{k-i} - x \right|^2 \]

DFE of ISI
EXAMPLE (cont.): FIR Channel

* \(f(D) = 1 - 1.5D + 0.5D^2, \ A = 1, \)

* \(y(D) = 2.1 - 2.9D \)

\[
\begin{align*}
x[0] &= -1 \\
|2.1-(+1)|^2 &= 9.61
\end{align*}
\]

\[
\begin{align*}
x[1] &= -1; \hat{x}[0] = +1 \\
|-2.9-(-1)+1.5(+1)|^2 &= 0.16
\end{align*}
\]

\[
\begin{align*}
x[0] &= +1 \\
|2.1-(+1)|^2 &= 1.21
\end{align*}
\]

\[
\begin{align*}
x[1] &= +1; \hat{x}[0] = +1 \\
|-2.9-(+1)+1.5(+1)|^2 &= 5.76
\end{align*}
\]
• Advantages of ZF-DFE:

 – Very low complexity

• Disadvantages of ZF-DFE:

 – Non-optimal probability of error

 – Not compatible with channel coding
• Tomlinson-Harashima (TH) precoding implements DFE at transmitter

• Advantages of TH Precoding:
 – Very low complexity
 – Allows channel coding

• Disadvantages of TH Precoding:
 – Non-optimal probability of error (same as ZF-DFE)
 – Not compatible with general shaped constellations ($M \times M$ QAM only)
V – Delayed Decision-Feedback Sequence Estimation (DDFSE)

• Hybrid of MLSE and ZF-DFE, with each as special cases

• Truncates channel response

• Uses VA on reduced state trellis

• Uses ZF-DFE on each branch
• State: \(X_k = (x_{k-1}, \ldots, x_{k-\mu}), \ 0 \leq \mu \leq \eta = \text{deg}\{f(D)\} \)

• Branch Metric:

\[
|y_k - \sum_{i=0}^{\mu} A f_i x_{k-i} - \sum_{i=\mu+1}^{\eta} A f_i \tilde{x}_{k-i}|^2 \\
\propto \frac{1}{A} y_k - \sum_{i=1}^{\mu} f_i x_{k-i} - \sum_{i=\mu+1}^{\eta} f_i \tilde{x}_{k-i} - x_k|^2 \\
\text{from State} \quad \text{from DFE} \\
\text{from ISI}
\]
• **For FIR Channels:** Requires storage of \(\eta - \mu \) previous decisions from minimum distance path to \(X_k \), i.e. \(\{\hat{x}_{k-\mu-1}, \ldots, \hat{x}_{k-\eta}\} \)

• **For IIR Channels:** We also want the finite storage of past decisions...
• Assume $f(D) = \beta(D)/\gamma(D)$. Write

$$f(D) = f_\mu(D) + D^{\mu+1} f^+(D)$$

where

$$f_\mu(D) = 1 + f_1 D + \cdots f_\mu D^\mu$$

$$f^+(D) = f_{\mu+1} + f_{\mu+2} D + \cdots f_\eta D^\eta$$

$$= \frac{(\beta(D) - f_\mu(D)\gamma(D)) D^{-(\mu+1)}}{\gamma(D)}$$

$$= \frac{\beta^+(D)}{\gamma(D)}$$

$$\beta^+(D) = (\beta(D) - f_\mu(D)\gamma(D)) D^{-(\mu+1)}$$
Define the IIR DFE contribution to ISI as
\[
w(D) = f^+(D)x(D) = \frac{\beta^+(D)}{\gamma(D)}x(D)
\]
So,
\[
w_k = \begin{cases}
\sum_{i=0}^{n} \beta_i^+ x_{k-i} - \sum_{i=1}^{m} \gamma_i w_{k-i} & (m > 0) \\
\sum_{i=0}^{n} f_{i+\mu+1} x_{k-i} & (m = 0)
\end{cases}
\]
where \(n = \text{deg}\{\beta^+(D)\} \) and \(m = \text{deg}\{\gamma(D)\} \)
• Rewrite the branch metric as:

\[|y_k - \sum_{i=0}^{\mu} A f_i x_{k-i} - A \hat{w}_{k-\mu-1}|^2 \]

where

\[\hat{w}_{k-\mu-1} = \sum_{i=\mu+1}^{\eta} f_i \hat{x}_{k-i} \]

\[= \left\{ \begin{array}{ll}
\sum_{i=0}^{n} \beta_i^+ \hat{x}_{k-\mu-1-i} \\
- \sum_{i=1}^{m} \gamma_i \hat{w}_{k-\mu-1-i} & (m > 0) \\
\sum_{i=0}^{\eta-\mu-1} f_i \hat{x}_{k-\mu-1-i} & (m = 0)
\end{array} \right. \]
• **For IIR Channel:** Requires

 - Current state: \(X_k = (x_{k-1}, x_{k-2}, \ldots, x_{k-\mu}) \),

 - Previous \(n \) decisions: \(\{\hat{x}_{k-\mu-1}, \ldots, \hat{x}_{k-\mu-n}\} \)

 - Previous \(m \) estimates of DFE IIR part of ISI: \(\{\hat{w}_{k-\mu-2}, \ldots, \hat{w}_{k-\mu-m-1}\} \)
• **EXAMPLE (cont.): FIR Channel**

* \(f(D) = 1 - 1.5D + 0.5D^2 \), \(A = 1 \)

* \(y(D) = 2.1 - 2.9D \)

* \(\mu = 1 \)
● Advantages of DDFSE:

 – Trades performance for complexity

 – Exists for IIR channels

 – Compatible with trellis coding

● Disadvantages of DDFSE:

 – Suboptimal in terms of error probability
VI – Performance

• In general, difficult to evaluate for MLSE and DDFSE

• Based on the notion of error events

• Performance of DDFSE is between MLSE and ZF-DFE
• Term in upper bound (see paper):

\[Q \left(\frac{1}{2} \frac{d_{\text{min}}^{\mu}}{N_0} \right) \]

\[\sum_{\lambda \in \Lambda_{d_{\text{min}}^{\mu}}} w(\lambda) \prod_{i=0}^{n-1} \frac{m - |e_i|}{m} \]

where

- \(|d_{\text{min}}^{\mu}| \) is the minimum distance achieved by an error event

- \(\Lambda_{d_{\text{min}}^{\mu}} \) is the set of error events which achieve the minimum distance

- \(w(\lambda) \) number of symbol errors entailed by error event \(\lambda \)
- \(n \) is the duration of error event \(w(\lambda) \)

- \(m \) is the number of points in the PAM constellation \(\mathcal{X} \)

- \(e_i = x_i - \hat{x}_i \) is the error sequence

- Error probability in the absence of preceding decision errors
• EXAMPLE (cont.): FIR Channel

* \(f(D) = 1 - 1.5D + 0.5D^2, \ A = 1 \)

* An error event in the VA with \(|d|^2 = 10 \)
• **EXAMPLE (cont.):** FIR Channel

* The same error event in the DDFSE

with \(|d|^2 = 9 \)
• EXAMPLE (cont.): FIR Channel

* The same error event in the ZF-DFE

with $|d|^2 = 4$
• **EXAMPLE (cont.):** FIR Channel

 - Plot of Error Performance (from Duel-Hallen, 1989):
VII – Conclusions

• Equivalent DT Channel Model

• MLSE – optimal detector (high complexity)

• ZF-DFE – suboptimal detector (low complexity)

• DDFSE – hybrid of MLSE and ZF-DFE