EFFECTIVE INTERFERENCE, EFFECTIVE BANDWIDTH AND USER CAPACITY LINEAR MULTIUSER RECEIVERS:

6.962 Graduate Seminar in Communication

November 9, 2000

Presenter: C. Emre Koksal

Outline

- 1. Introduction
- 2. Linear multiuser receivers
- 3. Performance under random spreading sequences
- 4. User capacity under power control
- 5. Multiple classes and effective bandwidths
- 6. Summary and final remarks

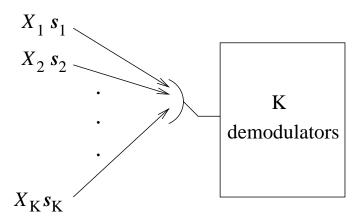
Introduction

Motivation

- High demand for all kinds of applications over wireless
- requirements Various quality of service (bit rate, probability of error)
- Can the system accommodate another user with a QoS constraint?
- How to take advantage of the additional degrees of freedom provided by spread-spectrum techniques.
- At the physical layer, signal to interference ratio (SIR) is the key parameter.
- system except in the worst case Previous work: Not much insight on how a user affects the

System Model

We consider a symbol-synchronous multi-access spread-spectrum system



Received vector, Y:

$$\mathbf{Y} = \sum_{i=1}^K X_i \mathbf{s}_i + \mathbf{W}$$

User i: $X_i \in \Re$ is the transmitted signal $(E[X] = 0, E[X^2] = P_i, X_i$'s are iid)

 $\mathbf{s}_i \in \mathbb{R}^N$ is the <u>random</u> spreading sequence and $\mathbf{W} \sim N(0, \sigma^2 I)$

Demodulators: Make a good estimate (soft) on the transmitted symbols.

Model - Continued

We are interested in the SIR \leftrightarrow rates (bits per symbol). e.g., Gaussian input distribution \Rightarrow

$$\frac{1}{2}\log(1+\mathrm{SIR}_i)$$

Successive cancellation is another possibility

Linear receivers \rightarrow Receiver 1:

$$\hat{X}_1 = \mathbf{c}_1^T \mathbf{Y} = X_1 \mathbf{c}_1^T \mathbf{s}_1 + \sum_{i=2}^K X_i \mathbf{c}_1^T \mathbf{s}_i + \mathbf{c}_1^T \mathbf{W}$$

$$SIR_{1} = \beta_{1} = \frac{E\left[\left(X_{1}\mathbf{c}_{1}^{T}\mathbf{s}_{1}\right)^{2}\right]}{\left(\mathbf{c}_{1}^{T}\mathbf{c}_{1}\right)\sigma^{2} + \sum_{i=2}^{K} E\left[\left(X_{i}\mathbf{c}_{1}^{T}\mathbf{s}_{i}\right)^{2}\right]}$$
$$= \frac{P_{1}(\mathbf{c}_{1}^{T}\mathbf{s}_{1})^{2}}{\left(\mathbf{c}_{1}^{T}\mathbf{c}_{1}\right)\sigma^{2} + \sum_{i=2}^{K} P_{i}(\mathbf{c}_{1}^{T}\mathbf{s}_{i})^{2}}$$

Linear Multiuser Receivers

- Matched filter
- The filter $\mathbf{c}_i = \mathbf{s}_i$:

$$\hat{X}_{mf,1}(\mathbf{Y}) = \frac{\mathbf{s}_1^T \mathbf{Y}}{\mathbf{s}_1^T \mathbf{s}_1}, \ \text{SIR}_1 = \frac{P_1(\mathbf{s}_1^T \mathbf{s}_1)^2}{(\mathbf{s}_1^T \mathbf{s}_1)\sigma^2 + \sum_{i=2}^K P_i(\mathbf{s}_1^T \mathbf{s}_i)^2}$$

- $-X_{mf,i}$ is the projection of **Y** on s_i .
- Decorrelator
- In the matrix form, Y can be written as

$$\mathbf{Y} = S\mathbf{X} + \mathbf{W}$$

where
$$\mathbf{X} = [X_1 \cdots X_K]^T$$
 and $S = [\mathbf{s}_1 \cdots \mathbf{s}_K]$

- matched filter outputs **R** form sufficient statistic for **X**:

$$\mathbf{R} = S^T S \mathbf{X} + S^T \mathbf{W}$$

Decorrelating filter is $(S^TS)^{-1}$ in addition to matched filter:

$$\mathbf{U} = (S^T S)^{-1} \mathbf{R} = \mathbf{X} + (S^T S)^{-1} S^T \mathbf{W}$$

- terms of the interference vector \Rightarrow suboptimal), SIR₁ = $\frac{P_1}{\sum_{ii}}$ Decorrelating receiver for user i is takes the projection of \mathbf{Y} onto $(\operatorname{span}\{(s_j)_{j\neq i}\})^{\perp}$ (Does not exploit correlation between the
- Minimum mean square error (MMSE) receiver
- The total interference for user 1 is:

$$\mathbf{Z} = \sum_{i=2}^{K} X_i \mathbf{s}_i + \mathbf{W}$$

The covariance matrix of Z is:

$$K_Z = S_1 D_1 S_1^T + \sigma^2 I$$

where S_1 is the $N \times (K \Leftrightarrow 1)$ matrix of signature sequences of interferers and D is the covariance matrix of $[X_2 \cdots X_K]^T$.

Eigenvalue decomposition $\rightarrow K_Z = Q^T \Lambda Q$. $K_Z > 0$ and the whitening filter for the interference is $\Lambda^{-\frac{1}{2}}Q$:

$$\Lambda^{-\frac{1}{2}}Q\mathbf{Y} = X_1\Lambda^{-\frac{1}{2}}Q\mathbf{s}_1 + \Lambda^{-\frac{1}{2}}Q\mathbf{Z}$$

Now that interference is white, apply matched filter to get scalar sufficient statistic for X_1 . Project $\Lambda^{-\frac{1}{2}}Q\mathbf{Y}$ along $\Lambda^{-\frac{1}{2}}Q\mathbf{s}_1$:

$$R = \mathbf{s}_1^T K_Z^{-1} \mathbf{Y} = (\mathbf{s}_1^T K_Z^{-1} \mathbf{s}_1) X_1 + \mathbf{s}_1^T K_Z^{-1} \mathbf{Z}$$

Finally, the MMSE estimate is the linear least squares estimate (LLSE) of X_1 given the observation R:

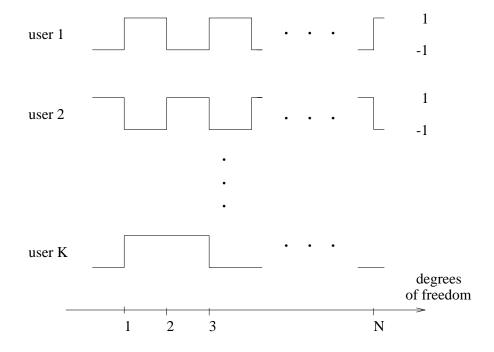
$$X_{mmse}(\mathbf{Y}) = \frac{\operatorname{cov}(X_1, R)}{\operatorname{var}(R)} R = \frac{P_1 R}{1 + P_1 R}$$
$$= \frac{P_1 \mathbf{s}_1^T K_Z^{-1} \mathbf{Y}}{1 + P_1 \mathbf{s}_1^T K_Z^{-1} \mathbf{Y}}$$

- The signal to interference ratio for user 1 is:

$$SIR_1 = \frac{(\mathbf{s}_1^T K_Z^{-1} \mathbf{s}_1)^2 P_1}{\mathbf{s}_1^T K_Z^{-1} \mathbf{s}_1} = P_1 \mathbf{s}_1^T K_Z^{-1} \mathbf{s}_1$$

Performance Under Random Spreading Sequences

• Spreading sequences: $\mathbf{s}_i = \frac{1}{\sqrt{N}} [V_{i1} \cdots V_{iN}]^T$, where V_{ik} 's are iid 0 mean and variance $1 \Rightarrow E[\|\mathbf{s}_i\|^2] = 1$. e.g.,



• We are interested in the case $K, N \to \infty$, $\frac{K}{N} = \alpha$. Assume that asymptotically empirical distribution of the powers of users (i.e., $\frac{1}{K} \sum X_i^2 = P_i$) converge to F(P)

Matched Filter

matched filter receiver for user 1. Then, with probability 1: Proposition 3.3: Let $\beta_{1,MF}^{(N)}$ be the (random) SIR of the conventional

$$\beta_{1,MF}^{(N)} \to \beta_{1,MF}^* = \frac{P_1}{\sigma^2 + \alpha \mathbb{E}_F[P]}$$

Sketch of the Proof: By definition,

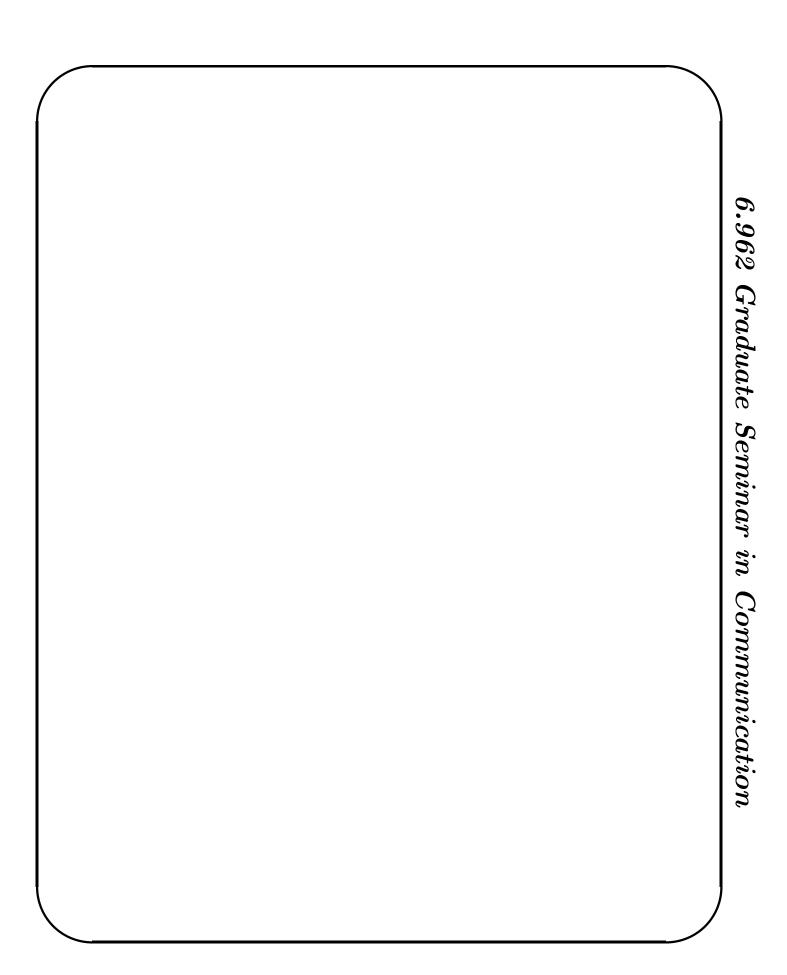
$$\beta_{1,MF} = \frac{P_1(\mathbf{s}_1^T \mathbf{s}_1)^2}{(\mathbf{s}_1^T \mathbf{s}_1)\sigma^2 + \sum_{i=2}^K P_i(\mathbf{s}_1^T \mathbf{s}_i)^2}$$

Note that $\mathbf{s}_1^T s_1 \to 1$ w.p. 1 and expanding $\mathbf{s}_1^T s_i$, it was shown that var $\left|\sum_{i=2}^K P_i(\mathbf{s}_1^T \mathbf{s}_i)^2 | P_1, P_2, \dots \right| = 0, \ \forall \text{ realizations of } P_i$'s. Thus,

$$\sum_{i=2}^{K} P_i(\mathbf{s}_1^T \mathbf{s}_i)^2 = E\left[\sum_{i=2}^{K} P_i(\mathbf{s}_1^T \mathbf{s}_i)^2\right] = \frac{K}{N} \frac{1}{K} \sum_{i=2}^{K} P_i \to \alpha \mathbb{E}_F[P]$$

with probability 1. Hence, $N \to \infty$, $P(\sum interferer_i) = \sum P(interferer_i)$

$$\beta_{1,MF} = \frac{P_1}{\sigma^2 + \frac{1}{N} \sum_{i=2}^{K} P_i}$$



MMSE Receiver

for user 1. Then, with probability 1: Theorem 3.1: Let $\beta_{1,MMSE}^{(N)}$ be the (random) SIR of the MMSE receiver

$$\beta_{1,MMSE}^{(N)} \to \beta_{1,MMSE}^* = \frac{P_1}{\sigma^2 + \alpha E_F[I(P, P_1, \beta_{1,MMSE}^*)]}$$

wnere

$$I(P, P_1, \beta_{1,MMSE}^*) = \frac{PP_1}{P_1 + P\beta_{1,MMSE}^*}$$

and Bai about the limiting eigenvalue distribution of large matrices. Notes on the Proof: We will use the following theorem due to Silverstein

are real valued random variables. The matrix $A_{n\times m}T_mA_{n\times m}^T$ has real a deterministic function, $G(\lambda)$. $G_n(\lambda)$ is a random variable. As $n, m \to \infty$, $\frac{m}{n} = \alpha$, $G_n(\lambda)$ approaches to non-negative eigenvalues with empirical distribution $G_n(\lambda)$. Note that iid with unit variance. Let T_m be a $m \times m$ diagonal matrix whose entries Let $A_{n\times m}$ be a $n\times m$ matrix whose $(i,j)^{\text{th}}$ entry is $\frac{X_{ij}}{\sqrt{n}}$ where X_{ij} 's are

Some Observations

- The covariance matrix $K_Z = S_1 D_1 S_1^T + \sigma^2 I$ has exactly the desired
- this asymptotic regime, interference is not white. The asymptotic eigenvalue distribution, $G(\lambda)$ is not degenerate \Rightarrow in
- If K were finite and $N \to \infty$, interference would be white w.p. 1.
- If N were finite and K is increased, interference will be increasingly white.
- outperfroms the matched filter. are identical. Thus, only if $\frac{\kappa}{N}$ is constant, the MMSE receiver If the interference is white, matched filter and MMSE receiver

Proof - continued

- One last complication left: Just the eigenvalue distribution may not be sufficient for SIR characterization:
- $K_Z = U^T \Lambda U$ where Λ is diagonal and U is orthogonal for every realization of Z.
- Recall that

$$\beta_{1.MMSE} = P_1 \mathbf{s}_1^T K_Z^{-1} \mathbf{s}_1 = P_1 (U \mathbf{s}_1)^T \Lambda^{-1} (U \mathbf{s}_1)$$

matters thus the relative position of s_1 wrt. eigenvectors of K_Z also

- coordinate system and $||U\mathbf{s}||$ is constant for any realization of Z. It is shown in Lemma 4.2 that as $N \to \infty$, s_1 is white in any
- distribution K_Z Thus, $\beta_{1,MMSE}$ can be characterized using only the eigenvalue

Comparison of MF and MMSE Receivers

The performances of the two receivers for large N:

$$\beta_{1,MF} = \frac{P_1}{\sigma^2 + \frac{1}{N} \sum_{i=2}^{K} P_i}, \ \beta_{1,MMSE} = \frac{P_1}{\sigma^2 + \frac{1}{N} \sum_{i=2}^{K} I(P_i, P_1, \beta_{1,MMSE})}$$

where $I(P, P_1, \beta_{1,MMSE}) = \frac{PP_1}{P_1 + P\beta_{1,MMSE}}$

- $I(P_i, P_1, \beta_1) < P_i$ since MMSE maximizes SIR
- $\beta_{1,MF}$ is independent of other signature sequences. $\beta_{1,MF} \to 0 \text{ as } P_i \to \infty.$
- $-I(P_i, P_1, \beta_1) \to \frac{P_1}{\beta_1}$ even as $P_i \to \infty$ (near-far resistance) since MMSE receiver exploits the structure of the interference
- contributing an amount called "effective interference" Decoupling of interfering effects of other users. Each user

Further Intuition on MMSE SIR Formula

• The equation

$$\beta = \frac{P_1}{\sigma^2 + \frac{1}{N} \sum_{i=2}^{K} I(P_i, P_1, \beta)}$$

has a unique solution since $\frac{1}{\beta} \frac{1}{\sigma^2 + \frac{1}{N} \sum_{i=2}^K I(P_i, P_1, \beta)}$ is a monotonically decreasing function of β (it cuts 1 at a single point). Let β^* be the unique root of the equation.

In general it is hard to evaluate β^* . But it can still be very useful:

$$\beta_T \leqslant \beta_1^* \Leftrightarrow \beta_T \leqslant \frac{P_1}{\sigma^2 + \frac{1}{N} \sum_{i=2}^K I(P_i, P_1, \beta_T)}$$

Thus, to check whether the SIR requirement β_T of a user can be met, check the second condition.

Performance of Decorrelator

If W = 0 then the input-output relation for decorrelator is as follows:

$$SX \rightarrow X$$

- It is clear that decorrelator for user 1, \mathbf{r}_1 , lies on $(\operatorname{span}\{(s_j)_{j\neq 1}\})^{\perp}.$
- It is further shown that (Proposition 7.1) \mathbf{r}_1 is the orthogonal projection of Y along $(\text{span}\{(s_j)_{j\neq 1}\})^{\perp}$. Given \mathbf{r}_1 , $SIR_1 = rac{P_1(\mathbf{r}_1^T\mathbf{s}_1)}{\sigma^2(\mathbf{r}_1^T\mathbf{r}_1)}$

In our asymptotic regime, what happens to $\mathbf{r}_1^T \mathbf{s}_1$?

Random SIR of the Decorrelator

- A theorem by Bai and Lin show that the smallest eigenvalue of positive number. the random matrix $S_1^T S_1$ converges almost surely to a strictly
- Hence S_1 is almost surely of full rank, $\min(K-1,N)$
- Note that dim $(\operatorname{span}\{(s_j)_{j\neq 1}\})^{\perp} = N \operatorname{rank}(S_1)$
- If $K > N \Rightarrow \mathbf{r}_1^T \mathbf{s}_1 \to 0$. If $K < N \Rightarrow \mathbf{r}_1^T \mathbf{s}_1 \to \left(1 \frac{K}{N}\right) \mathbf{r}_1^T \mathbf{r}_1$
- Thus,

$$\beta_{1,DEC}^{(N)} \to \beta_{1,DEC}^* = \begin{cases} \frac{P_1(1-\alpha)}{\sigma^2} & \alpha < 1 \\ 0 & \alpha \geqslant 1 \end{cases}$$

where $\alpha = \frac{K}{N}$

User Capacity under Power Control

- level can be controlled and If the power levels of the users can be controlled, interference
- The user capacity can be increased (What is the maximum number of users per degree os freedom?) given a maximum power constraint
- The power consumption per user can be reduced given a constant number of users

Matched Filter

The asymptotic SIR relation for matched filter is:

$$\beta_{1,MF} = \frac{P_1}{\sigma^2 + \frac{1}{N} \sum_{i=2}^{K} P_i}$$

To meet the SIR requirement β^* , set all the received power levels to:

$$P_{mf}(\beta^*) = \frac{\beta^* \sigma^2}{1 \Leftrightarrow \alpha \beta^*}$$

Without a power constraint

User capacity is bounded by $\alpha_{\rm max} < \frac{1}{\beta^*}$ users / degree of freedom

- As $\alpha \to \frac{1}{\beta^*}$, power requirement $\to \infty$

With power constraint, P_{max} , set $P_i = P_{\text{max}}$, $\forall i$ to maximize α :

$$\alpha_{\text{max}} = \frac{1}{\beta^*} \Leftrightarrow \frac{\sigma^2}{P_{\text{max}}} \text{users/degree of freedom}$$

MMSE Receiver

Suppose the system supports an SIR of β^* for all users. Thus $\forall i$

$$\frac{P_i}{\sigma^2 + \frac{1}{N} \sum_{j \neq i} I(P_j, P_i, \beta^*)} \geqslant \beta^*$$

Let $P^* = \inf_i P_i$, the power of the weakest user, k. But still,

$$\frac{P^*}{\sigma^2 + \frac{1}{N} \sum_{j \neq k} I(P_j, P^*, \beta^*)} \geqslant \beta^*$$

Since I only decreases as the interferer powers decrease, we have

$$\frac{P^*}{\sigma^2 + \frac{1}{N} \sum_{j \neq k} I(P^*, P^*, \beta^*)} = \frac{P^*}{\sigma^2 + \alpha I(P^*, P^*, \beta^*)} \geqslant \beta^*$$

With $I(P^*, P^*, \beta^*) = \frac{P^*}{1+\beta^*}$, we have:

$$\alpha \leqslant \frac{1+\beta^*}{\beta^*} - (1+\beta^*) \frac{\sigma^2}{P^*}$$

MMSE Receiver - continued

- We can summarize this result as follows:
- Given a maximum power constrint P^* and an SIR requirement β^* , the maximum achievable rate $(P_i = P^*, \forall i)$:

$$\alpha \leqslant \frac{1+\beta^*}{\beta^*} \Leftrightarrow (1+\beta^*) \frac{\sigma^2}{P^*}$$

2. Without the power constraint, the bound relaxes to:

$$\alpha < \frac{1+\beta^*}{\beta^*} = 1 + \frac{1}{\beta^*}$$

- 3. The minimal solution is the degenerate power assignment. to that of the weakest user and still meet β^* Otherwise, one can decrease the power levels of every other user
- Given an SIR, β^* , the minimum power necessary at rate α is:

$$P_{mmse}(eta^*) = rac{eta^* \sigma^2}{1 \Leftrightarrow lpha rac{1+eta^*}{eta^*}}$$

Remarks on Power Control and User Capacity

- With the conventional receiver, arbitrarily high β^* is not achievable: $\beta^* \uparrow \frac{1}{\alpha} \Rightarrow \text{saturation } (P^* \to \infty).$
- MMSE receiver supports an extra user per degree of freedom $(lpha_{ ext{max}} = 1 + rac{1}{eta^*}).$
- achieved with $P_{mmse} = O(\beta^{*2})$. At $\alpha = 1$ user/degree of freedom, arbitrarily high β^* can be
- achieved with $P_{mmse} = O(\beta^*)$. At $\alpha < 1$ users/degree of freedom, arbitrarily high β^* can be
- With a similar analysis for the decorrelator,
- interferer powers. because projection along $(\text{span}\{(s_j)_{j\neq 1}\})^{\perp})$ is independent of We get $\alpha_{\text{max}} < 1$. The bound is independent of β^* (makes sense
- At $\alpha < 1$ users/degree of freedom, arbitrarily high β^* can be achieved with $P_{dec} = O(\beta^*)$.

Multiple Classes and Effective Bandwidths

- Conservation laws
- e.g., queueing systems Work conservation \Rightarrow total resource consumption is constant.
- Effective bandwidth of a user is a measure of what portion of the total resource that user consumes
- $-\sum$ effective bandwidths is constant
- Matched filter with J multiple classes each with $K_j = \alpha_j N$ users
- Suppose class j users require β_j . The minimum power required by class j users is:

$$P_{mf}(j) = \frac{\beta_j \sigma^2}{1 \Leftrightarrow \sum_{k=1}^{J} \alpha_k \beta_k}$$

Thus, $\sum_{j=1}^{J} \alpha_j \beta_j < 1$ gives us the feasible rate region.

Multiple Classes - continued

- Using a similar approach for the MMSE receiver,
- The minimum power necessary to meet the SIR requirement

$$P_{mmse}(j) = \frac{\beta_j \sigma^2}{1 - \sum_{k=1}^{K} \alpha_k \frac{\beta_k}{1 + \beta_k}}$$

- Thus, $\sum_{j=1}^{J} \alpha_j \frac{\beta_j}{1+\beta_j} < 1$ gives us the feasible rate region.
- specified by $\sum_{j=1}^{J} \alpha_j < 1$ Similarly for the decorrelator, the feasible rate region is

Remarks on Effective Bandwidths

- user without violating the SIR constraint). The necessary power to meet β_j is constant over users of type j (otherwise decrease the powers down to that of the weakest type j
- Define $e_{mf,j} = \beta_j$, $e_{mmse,j} = \frac{\beta_j}{1+\beta_j}$, $e_{dec,j} = 1$. Feasible rate regions are defined as:

$$\sum_{j} e_{\cdot,j} \alpha_{j} < 1$$

- It seems reasonable to define $e_{\cdot,j}$ degrees of freedom/user as the effective bandwidth of type j users (α_j is inversely proportional to $e_{\cdot,j}$).
- Boundary of the feasible rate region is linear (convex polyhedral) asymptotic decoupling of interference due to other users). in all receivers. Makes sense in MF. In MMSE, a consequence of
- Performance with power control: low SIR \Rightarrow MMSE \sim MF; high $SIR \Rightarrow MMSE \sim decorrelator$

Antenna Diversity

- The results can be applied to a multiple-antenna scenario:
- The model for a synchronous multi-access antenna-array system:

$$\mathbf{Y} = \sum_{m=1}^{K} X_m \mathbf{h}_m + \mathbf{W}$$

where X_m is the symbol of m^{th} user

- Suppose fading vectors, \mathbf{h}_m , are slowly varying and iid.
- We have exactly the same model:
- * Asymptotically interfering users contribute additively to effective interference.
- User capacity is characterized by sharing the N degrees of freedom among users according to their effective bandwidths.

Final Remarks

- Asymptotically, a decoupling of interfering effects is indeed possible for linear receivers
- Each user can be ascribed a level of effective interference that it provides to every other user
- Under power control, the user capacity region has a linear function of their SIR requirement. representing its resource consumption which is a non-decreasing boundary and each user can be assigned an effective bandwidth

much simpler to implement (matched filters \equiv MMSE receiver). decorrelator and almost identical to MMSE at high SIR. They are user/degree of freedom which is indeed equal to that of the What does this imply about direct sequence CDMA systems? Discussion: TDMA or FDMA systems have a user capacity of 1