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Abstract

Multiuser receivers improve the performance of spread-spectrum and antenna-array sys-
tems by exploiting the structure of the multiaccess interference when demodulating the
signals of a user. Much of the previous work on the performance analysis of multiuser
receivers has focused on their ability to reject worst-case interference. Their performance
in a power controlled network and the resulting user capacity are less well-understood.

In this paper, we show that in a large system with each user using random spreading
sequences, the limiting interference e�ects under several linear multiuser receivers can be
decoupled, such that each interferer can be ascribed a level of e�ective interference that it
provides to the user to be demodulated. Applying these results to the uplink of a single

power-controlled cell, we derive an e�ective bandwidth characterization of the user capac-

ity: the signal-to-interference requirements of all the users can be met if and only if the
sum of the e�ective bandwidths of the users is less than the total number of degrees of

freedom in the system. The e�ective bandwidth of a user depends only on its own SIR re-
quirement, and simple expressions are derived for three linear receivers: the conventional

matched �lter, the decorrelator and the MMSE receiver. The e�ective bandwidths under

the three receivers serve as a basis for performance comparison.
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1 Introduction

To meet the growing demand of untethered applications, there have been intense e�orts

in recent years to develop more sophisticated physical layer communication techniques to

increase the spectral e�ciency of wireless systems. A signi�cant thrust of work has been

on developing multiuser receiver structures which mitigate the interference between users

in spread spectrum systems. These receivers include the optimum multiuser detector

[24], the linear decorrelator [11, 12] and the linear minimum mean-square error (MMSE)

receiver [29, 13, 16, 17]. Unlike the conventional matched �lter receiver, these techniques

take into account the structure of the interference from other users when demodulating

a user. Another important line of work is the development of processing techniques

in systems with antenna arrays. Both spread-spectrum techniques and antenna arrays

provide additional degrees of freedom through which communication can take place, and
multiuser techniques aim to better exploit those degrees of freedom.

Despite signi�cant work done in the area, there is still much debate about the user

capacity1 of the various approaches to deal with multiuser interference. One reason is that
the performance of multiuser receivers in conjunction with networking level techniques of
power control and resource allocation are less well understood than for more traditional

multi-access schemes. Indeed, much of the previous work on performance evaluation
of multiuser receivers focuses on their ability to reject worst-case interference (near-far
resistance [11]) rather than on their performance in a power-controlled system. The main
goal of this paper is to make progress towards addressing these issues.

One di�culty in understanding the performance of multiuser receivers in power-
controlled environments stems from the intertwining of the e�ects of all of the interferers
in the system. For example, the MMSE receiver depends on the signature sequences

and received powers of all interferers, and hence at the output of the �lter, it is hard
to separate out the e�ect of individual interferers. The main result of this paper shows,
somewhat surprisingly, that in a large system with many degrees of freedom and many

users, a decoupling of the interfering e�ects is indeed possible for several important linear
receivers: each interferer can be ascribed a level of e�ective interference that it provides
to the user to be demodulated. The e�ective interference of an interferer depends only

on the received power of the interferer, the received power of the user being demodulated

and the achieved signal-to-interference ratio (SIR) at the output of the receiver.

Applying this notion of e�ective interference to the uplink of a single power-controlled

cell, we derive an e�ective bandwidth characterization of the user capacity under several
linear receivers. Assuming that each user's requirement can be expressed in terms of a
target SIR at the output of the receiver, we will show that a notion of e�ective bandwidth

can be de�ned such that the SIR requirements of all the users can be met if and only if

the sum of the e�ective bandwidths of the users is less than the total number of degree
of freedom in the system. These degrees of freedom can be provided by the processing

1In this paper, we use the term user capacity to refer to the number of users that can be supported at

the desired quality-of-service requirement. This should be distinguished from the information theoretic

capacity of a channel.

2



gain in a spread-spectrum system or the number of antenna elements in a system with an

antenna array. These capacity characterizations are simple in that the e�ective bandwidth

of a user depends only on its own SIR requirement and nothing else. While this approach

yields an interference-limited characterization of the user capacity, we will also quantify

the reduction in user capacity when there are additional power constraints on the users.

We observe that the SIR is a reasonable performance measure for the class of linear

multiuser receivers we are concerned with.

The e�ective bandwidth of a user depends on the multiuser receiver employed. Results

for three receivers are obtained: the linear MMSE receiver, the decorrelator and the

conventional matched �lter receiver. We will show that the e�ective bandwidths are

respectively:

emmse(�) =
�

1 + �
edec(�) = 1 emf(�) = �;

where � is the SIR requirement of the user. These e�ective bandwidth expressions also
provide a succinct basis for performance comparison between di�erent receiver structures.
In particular, the MMSE receiver occupies a special place as it can be shown to lead to

the minimum e�ective bandwidth amongst all linear receivers. Moreover, its performance
is the least understood of the three receivers, and its analysis is the main thrust of this
paper.

To obtain these results, we assume that the users' signals arrive from random direc-

tions. In the context of a spread-spectrum system, this means that each of the users
employ random spreading sequences. In the context of an antenna array system, this
translates into independent fading from each of the users to each of the receiving antenna

elements. We will also restrict our analysis to synchronous systems in this paper. Exten-
sions of these results to symbol-asynchronous spread-spectrum systems can be found in
[9].

Related results on the performance of multiuser receivers under random spreading
sequences were obtained independently in [26], presented simultaneously as a conference

version [19] of this work. They considered exclusively the single class case where every user
has the same received power and same rate requirement, and derived Shannon theoretic
performance. In the present paper, our main results are for situations where users have

di�erent received powers and possibly di�erent SIR requirements.

The outline of the paper is as follows. In Section 2, we will introduce the basic model

of a multi-access spread-spectrum system and the structure of the MMSE receiver. In

Section 3, we will present our main result, that in a large system with each user using
random spreading sequences, the limiting interference e�ects under the MMSE receiver

can be decoupled into a sum of e�ective interference terms, one from each of the interferers.
In sections 5 and 6, we apply this result to study the performance under power control

and obtain a notion of e�ective bandwidth. In Section 7, we obtain analogous results for

the decorrelating receiver. In Section 8, we show that similar ideas carry through for
systems with antenna diversity. Section 9 contains our conclusions.
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2 Basic Spread-Spectrum Model and the MMSE

Receiver

In a spread-spectrum system, each of the user's information or coded symbols is spread

onto a much larger bandwidth via modulation by its own signature or spreading sequence.

The following is a chip-sampled discrete-timemodel for a symbol-synchronous multi-access

spread-spectrum system:

Y =
KX
i=1

Xisi +W; (1)

where Xi 2 < and si 2 <N are the transmitted symbol and signature spreading sequence

of user i respectively, and W is N(0; �2I) background Gaussian noise. The length of

the signature sequences is N , which one can also think of as the number of degrees of
freedom. The received vector is Y 2 <N . We assume the Xi's are independent and that
E[Xi] = 0 and E[X2

i ] = Pi, where Pi is the received power of user i. There are K users

in the system.

Rather than looking at multiuser detection, which involves hard decisions on a symbol

by symbol basis, we are more interested in the problem of extracting good estimates of the
(coded) symbols of each user as soft decisions to be used by the channel decoder. For this
reason, we prefer the term \multiuser receiver" rather than \multiuser detector", although
the latter is more common in the literature. In this case, the relevant performance measure
is the signal-to-interference ratio (SIR) of the estimates.

We shall now focus on the demodulation of user 1, assuming that the receiver has
already acquired the knowledge of the spreading sequences. In this paper, we shall con�ne

ourselves to the study of linear demodulators, such that the estimates are linear functions
of the received vector Y. For user 1, the optimal demodulator c1 that generates a soft
decision X̂1 � ct1Y maximizing the signal-to-interference ratio (SIR):

�1 � (ct1s1)
2P1

(ct1c1)�
2 +

PK
i=2(c

t
1si)

2Pi

is the MMSE receiver 2 [13, 16, 17].

As a comparison, note that the conventional CDMA approach simply matches the

received vector to s1, the signature sequence of user 1. This is indeed the optimal receiver
when the interference from other users is white. However, in general the multi-access

interference is not white and has structure as de�ned by s2; s3; : : : ; sK , assumed to be

known to the receiver. The MMSE receiver exploits the structure in this interference in

maximizing the SIR of user 1.

While there are well-known formulas for the MMSE receiver and its performance, we

will describe a simple derivation, which provides some geometric insights to the operation

of this receiver. Let
2More precisely, this should be termed the linear least square (LLSE) receiver, since it is only optimal

within the class of linear receivers if the Xi's are not Gaussian. In deference to the standard practice in

the multiuser detection literature, however, we will call this the MMSE receiver.
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Z =
KX
i=2

Xisi +W

be the total interference for user 1 from other users and background noise. Then

Y = X1s1 + Z

If Z were white, then

Xmmse(Y) =
st1Y

st1s1
;

which is a projection onto s1, i.e. the conventional matched �lter. In general, then, we
should whiten the interference Z and then follow that by a projection. The covariance
matrix of Z is

Kz = S1D1S
t
1 + �2I

where S1 is a N by K � 1 matrix whose columns are the signature sequences of the other
users, andD1 = diag(P2; : : : ; PK) is the covariance matrix of (X2; : : : ;XK)

t. Kz is positive
de�nite. Factorize Kz = Qt�Q, where � = diagf�1; : : : ; �Ng is the diagonal matrix of
(positive) eigenvalues of Kz, and the columns of Q are the orthonormal eigenvectors of

Kz. The whitening �lter is simply ��
1
2Q. Applying this to Y, we get:

��
1
2QY = X1�

� 1
2Qs1 + ��

1
2QZ;

and we note that the interference is now white. We can then project it along the direction
��

1
2Qs1 to get a scalar su�cient statistic for the estimation problem:

R � st1K
�1
z Y =

�
st1K

�1
z s1

�
X1 + st1K

�1
z Z

Thus, the MMSE demodulator is [13]:

Xmmse(Y) =
P1

1 + P1s
t
1(S1D1S

t
1 + �2I)�1s1

st1(S1D1S
t
1 + �2I)�1Y (2)

and the signal to interference ratio for user 1 is

SIR1 = P1s
t
1(S1D1S

t
1 + �2I)�1s1 (3)

While the SIR is taken as the basic measure of performance in this paper, we would

like to mention some connections to information theoretic quantities:
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� If the linear receiver is followed by single-user decoders, one for each user, then the

mutual information achieved for each user under an independent Gaussian input

distribution is precisely
1

2
log (1 + SIRi)

bits per symbol time. There is therefore a one-to-one monotonic relationship between

the information theoretic rate and the achieved SIR. In particular, meeting a target

SIR is equivalent to meeting a target rate.

� It has been shown [22] that any vertex of the Shannon capacity region of the CDMA

channel (1) can be achieved by a combination of successive cancellation and MMSE

demodulation. Each vertex corresponds to a particular choice of decoding order. The

information theoretic rate achieved for the ith user in a given decoding order is

1

2
log

�
1 + ~SIRi

�
;

where ~SIRi is the SIR at the output of the MMSE demodulator for the ith user, with
the signals from the �rst i� 1 users already cancelled o�.

3 Performance Under Random Spreading Sequences

Eqn. (3) is a formula for the performance of the MMSE receiver, which one can compute

for speci�c choices of signature sequences. However, it is not easy to obtain qualitative
insights directly from the formula. For example, the e�ect of an individual interferer on the
SIR for user 1 cannot be seen directly from this formula. In practice, it is often reasonable
to assume that the spreading sequences are randomly and independently chosen. (See eg.
[14, 3].) For example, they may be pseudorandom sequences, or the users choose their

sequences from a large set of available sequences as they are admitted into the network, or

the transmitted sequences may be distorted by random multipath fading channels. In this
case, the performance of the optimal demodulator can be modeled as a random variable,
since it is a function of the spreading sequences. In this section, we will show that, unlike

the deterministic case, there is a great deal of analytical information one can obtain about

this random performance in a large network. In the development below, we will assume
that although the sequences are randomly chosen, they are known to the receiver once they

are picked. In practice, this assumes that the change in the spreading sequences occurs
at a much slower timescale than the time required to acquire the sequences. (There are

known adaptive algorithms for which acquisition can be done blindly; see [6].) However,
the performance of the MMSE receiver depends on the initial choice of the sequences and

hence is random.

The model for random sequences is as follows : let si =
1p
N
(Vi1; : : : ; ViN )

t
; i = 1; : : :K:

The random variables Vik's are i.i.d., zero mean and variance 1. The normalization by
1p
N
ensures that E[ksik2] = 1. In practice, it is common that the entries of the spreading

sequences are 1 or �1, but we want to keep the model general so that we can later apply
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our results to problems with other modes of diversity. For technical reasons, we will also

make the mild assumption that E[V 4
iN ] <1:

Our results are asymptotic in nature, for a large network. Thus, we consider the

limiting regime where the number of users is large, i.e. K ! 1. To support a large

number of users, it is reasonable to scale up N as well, keeping the number of users per

degree of freedom (equivalently, per unit bandwidth), � � K

N
, �xed. We also assume that

as we scale up the system, the empirical distribution of the powers of the users converge

to a �xed distribution, say F (P ). The following is our main result, giving the asymptotic

information about the SIR for user 1.

Theorem 3.1 Let �
(N)

1 be the (random) SIR of the MMSE receiver for user 1 when the

spreading length is N . Then �
(N)

1 converges to ��1 in probability as N !1, where ��1 is

the unique solution to the equation:

��1 =
P1

�2 + �EP [I(P;P1; �
�
1)]

(4)

and

I(P;P1; �
�
1) �

PP1

P1 + P��1
(5)

Here, EP [�] denotes taking the expectation with respect to the limiting empirical distribution

F of the received powers of the interferers.

Heuristically, this means that in a large system, the SIR �1 is deterministic and ap-
proximately satis�es:

�1 � P1

�2 + 1

N

PK
i=2 I(Pi; P1; �1)

(6)

where as before Pi is the received power of user i. This result yields an interesting

interpretation of the e�ect of each of the interfering users on the SIR of user 1: for a
large system, the total interference can be decoupled into a sum of the background noise
and an interference term from each of the other users. (The factor 1

N
results from the

processing gain of user 1.) The interference term depends only on the received power of the

interfering user, the received power of user 1 and the attained SIR. It does not depend on
the other interfering users except through the attained SIR �1. This decoupling is rather

surprising since the e�ect of an interferer depends on the MMSE receiver c1, which in
turn is a function of the signature sequences and received powers of all the users in the

system.

One must be cautioned not to think that this result implies that the interfering e�ect of
the other users on a particular user is additive across users. It is not, since the interference

term I(Pi; P1; �1) from interferer i depends on the attained SIR which in turn is a function

of the entire system. Due to the following proposition, on the other hand, one can make

a related statement.

7



Proposition 3.2 The equation

x =
P1

�2 + 1

N

PK
i=2 I(Pi; P1; x)

(7)

has a unique �xed point x�. For any x, x� � x if and only if

P1

�2 + 1

N

PK
i=2 I(Pi; P1; x)

� x

Proof. De�ne the function

f(x) � 1

P1

 
�2x+

1

N

KX
i=2

xI(Pi; P1; x)

!

=
1

P1

 
�2x+

1

N

KX
i=2

PP1x

P1 + Px

!

which we note to be a continuous, strictly increasing function.

To see that a �xed point x� exists to (7), we note that f(0) = 0 and f(1) =1 so it
follows that there must exist a value x� satisfying f(x�) = 1. But this implies that x� is
a unique �xed point of (7). By monotonicity of f ,

x� � x , f(x) � 1

, P1

�2 + 1

N

PK
i=2 I(Pi; P1; x)

� x

2

It follows then that to check if the target for user 1's SIR, �T , can be met for a given

system of users, it su�ces to check the following condition:

P1

�2 + 1

N

PK
i=2 I(Pi; P1; �T )

� �T

Based on this interpretation, it seems justi�ed to term I(Pi; P1; �T ) as the e�ective inter-

ference of user i on user 1, at a target SIR of �T .

To gain more insights into this concept of e�ective interference, it is helpful to compare

the situation with that when the conventional matched �lter s1 is used for the demodu-
lation. For that case, we have the following proposition, in parallel with Theorem 3.1:

Proposition 3.3 Let �
(N)

1;MF be the (random) SIR of the conventional matched �lter re-

ceiver for user 1 when the spreading length is N . Then as N;K !1 with K

N
! �, �

(N)

1;MF

converges in probability to
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��1;MF =
P1

�2 + EP [P ]

where as before the expectation is taken with respect to the limiting empirical distribution

F of the received powers of the interferers.

Proof. See appendix B. 2

Hence, for large N , the performance of the matched receiver is approximately:

�1;MF � P1

�2 + 1

N

PK
i=2 Pi

(8)

Comparing this expression with eqn. (6), we see that the interference due to user
i is simply Pi in place of I(Pi; P1; �1). Since the matched receiver �lter is independent
of the signature sequences of the other users, it is not surprising that the interference
is linear in the received powers of the interferers. In the case of the MMSE receiver,
the �lter does depend on the signature sequences of the interferers, thus resulting in the

interference being a non-linear function of the received power of the interferer. Also,
observe that I(Pi; P1; �1) < Pi, which is expected since the MMSE receiver maximizes
the SIR amongst all linear receivers. But more importantly, while for the conventional
receiver, the interference grows unbounded as the received power of the interferer increases,
we see that for the MMSE receiver, the e�ective interference (5) from user i is bounded

and approaches P1
�1

as Pi goes to in�nity. Thus, while the SIR of the matched �lter
receiver goes to zero for large interferers' powers, the SIR of the MMSE receiver does
not. This is the well-known near-far resistance property of the MMSE receiver [13]. The
intuition is that as the power of an interferer grows to in�nity, the MMSE receiver will
null out its signal. While the near-far resistance property has been reported by previous

authors, Theorem 3.1 goes beyond these works in that it not only quanti�es the worst-case

performance (i.e. large interferer's power) but also the performance for all �nite values of
the interference. This is useful, for example, in situations when power control is exercised,
as we will turn to in the next section.

In general, we have no explicit solution for the SIR ��1 in eqn. (4). However, for the
special case when the received powers of all users are the same, the equation is quadratic

in ��1 and a simple solution is obtained (independently obtained in [26]):

��1 =
(1� �)P

2�2
� 1

2
+

s
(1 � �)2P 2

4�4
+
(1 + �)P

2�2
+
1

4
(9)

We see that the ��1 is positive for all values of �, and approaches 0 as �, the number of

users per degree of freedom, goes to in�nity.

To get a sense of the convergence of the random SIR to the asymptotic limit in the

equal received power case, Fig. 1 compares the actually realized SIR's from randomly
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generated spreading sequences to the asymptotic limit (9). For di�erent spreading lengths

and for each value of �, 100 samples of realized SIR's for user 1 are obtained from randomly

generated +1 and �1 spreading sequences. One sees that as the processing gain increases,

the spread around the asymptotic limit becomes more narrow, to about 1 or 2 dB when

N = 128. Note however that for a �xed processing gain, the spread does not get smaller

as the number of users increases, which means that the relative spread is large when the

SIR is low. Fig. 2 plots the SIR's attained across users for a single realization of the

random spreading sequences. The processing gain N = 128 and the number of users is

80. Again, there is a spread of about 1 dB around the asymptotic limit.

Theorem 3.1 gives only the asymptotic limit but does not describe the 
uctuation of

the SIR around this limit for �nite-sized system. A sequel [20] to this paper is devoted to

the analysis of such 
uctuations, via Central-Limit theorems. It turns out that even the

computation of the variance of the 
uctuations is non-trivial. See also [7, 8] for a related
study.

Two performance measures commonly used in the literature for multiuser receivers
are their e�ciency and their asymptotic e�ciency [25]. In the context of linear receivers,
the e�ciency for user 1 is de�ned to be the ratio of the achieved SIR to the SIR when
there is no interferer and only background noise. For the MMSE receiver with random
spreading sequences and equal received power for all users, this is given by:

��1�
2

P

where ��1 is given by (9). The asymptotic e�ciency �1 is the limiting e�ciency as the

background noise goes to zero. If � � 1, this is given by:

�1 := lim
�!0

��1�
2

P
= 1� �

For � > 1, the limiting SIR is positive but bounded:

lim
�!0

��1 =
1

�� 1
(10)

and so the asymptotic e�ciency is 0.

4 Proof of Main Theorem

We will now prove our main result, Theorem 3.1. It hinges on a result about the limiting

eigenvalue distribution of large matrices whose elements are random variables. Let Xij

be an in�nite array of i.i.d. complex-valued random variables with variances 1, and Ui be

a sequence of real-valued random variables. Let An;m be a n by m matrix, whose (i; j) th

entry is
Xijp
n
. Let Tm be an m by m diagonal matrix whose diagonal entries are U1; : : :Um;

we assume that as m ! 1, the empirical distribution of these entries converges almost

surely to a non-random limit F . Moreover, Tm is independent of Am;n.
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The matrix An;mTmA
H
n;m (AH is the complex conjugate transpose of A) is n by n

Hermitian and has real non-negative eigenvalues �
(n)
1 ; : : : ; �(n)n . Let Gn(�) be the empirical

distribution of the eigenvalues; since the eigenvalues are random, so is Gn. (The empirical

distribution of the eigenvalues depends on the realization of the random entries of An;m

and Tm.) The following theorem due to Silverstein and Bai [18] , which is a strengthening

of an earlier result by Marcenko and Pastur [15], gives the asymptotic behavior of Gn

as n and m grows. The solution is in terms of the Stieltjes transform, which for any

distribution G is de�ned as:

mG(z) =
Z

1

� � z
dG(�)

for z 2 C+ � fz 2 C : Imz > 0g:

Theorem 4.1 As n;m ! 1 such that m

n
! � > 0, then almost surely Gn converges

in distribution to a non-random limit G�. The Stieltjes transform m(z) of the limit G�

satis�es the following equation:

m(z) =
1

�z + �
R �dF (�)

1+�m(z)

(11)

for all z 2 C+.

The above theorem says that the empirical distribution of the eigenvalues for large
random matrices looks the same for almost all realizations of the entries. Eqn. (11) gives
a functional equation for the Stieltjes transform of the limit; in general, it cannot be

solved explicitly.

We can apply this result to the covariance matrix Kz = S1D1S
t
1 + �2I of the inter-

ference; note that in this case F is the distribution function of the received power. It

follows that in a large system with random signature sequences, the spectrum of the
interference is essentially deterministic, since it converges to the nonrandom limiting dis-
tribution described in the theorem. Moreover, since the limiting eigenvalue distribution

is not degenerate, it follows that the deterministic spectrum is colored and not white.

This is perhaps a little counter-intuitive. For, if the number of interferers were �xed and

the number of degrees of freedom increased, then each interferer would be more or less

orthogonal to user 1 and the overall interference would be white. On the other hand, if
the number of degrees of freedom were �xed and the number of interferers increased, the

aggregate interference would also become increasing white because of averaging. Theorem
4.1 tells us, however, that when there are many interferers and many degrees of freedom,

neither intuition is correct and the aggregate interference has a colored spectrum in the

limit. As a consequence, the MMSE receiver outperforms the conventional matched �lter,
even in the limit.

Theorem 4.1 gives the asymptotic distribution of the eigenvalues of the covariance

matrixKz. However, this is in general not enough for characterizing the SIR performance
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for user 1, as that depends on the position of s1 relative to the eigenvectors of Kz. This

can be seen by writing Kz = U t�U where � is diagonal and U is orthogonal, so that the

SIR for user 1 is given by

�1 = P1s1K
�1
z s1 = P1(Us1)

t��1(Us1):

However, the following lemma shows that the distribution of the eigenvectors is asymp-

totically irrelevant since for large spreading length, s1 looks \white" in any coordinate

system, in the sense of containing about the same amount of energy in each direction.

Lemma 4.2 Let Q be a random m by n matrix (m < n) such that every realization

consists of orthonormal rows. Let X = (V1; : : : ; Vn)
t where the Vi's are i.i.d. random

variables independent of Q, E[Vi] = 0, E[V 2
i ] = 1 and E[V 4

i ] <1. Then for any � > 0,

Pr

"
jkQXk

2

n
� m

n
j > �

#
<
C

n

for some constant C which depends only on � and the statistics of Vi.

Proof. See appendix B. 2

This lemma allows us to express the limiting SIR in terms of only the eigenvalue
distribution of Kz .

Lemma 4.3 As N;K !1, K
N
! �, the SIR �

(N)

1 converges in probability to

�� =
Z 1

0

P1

�+ �2
dG�(�);

where G� is the limiting eigenvalue distribution of the random matrix S1D1S
t
1.

Proof. See appendix B. 2

We shall now complete the proof of the Theorem 3.1 by evaluating this limit ��.

Consider the Stieltjes transform of the limiting spectrum G� of the matrix S1D1S
t
1 +

�2I:

mG�(z) =
Z 1

0

1

� � z
dG�(�) z 2 C+:

By Theorem 4.1, this satis�es:

mG�(z) =
1

�z + �
R PdF (P )

1+PmG�(z)

(12)
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where F is the limiting distribution of the received powers of the users.

Since the support of G� is on the non-negative real axis, mG� is continuous in the

neighborhood of z = ��2. It follows that

lim
z!��2

m�
G(z) =

Z 1

0

1

� + �2
dG�(�) =

��

P1

By the continuity of the righthand side of eqn. (12) as a function of mG�(z), it follows

from Lemma (4.3) that

��

P1

=
1

�2 + �
R1
0

PdF (P )

1+
P��

P1

:

Hence the limiting SIR for user 1 satis�es:

��1 =
P1

�2 + �
R1
0

P1PdF (P )

P1+P�
�

1

:

which completes the proof of the theorem.

While the above provides a rigorous proof, it provides little intuition as why The-
orem 3.1 is true. In particular, a better understanding of the decoupling phenomenon
between interferers is desired. Based on some new results obtained in [27], we provide
a heuristic but more intuitive derivation of formula (4) in Appendix A, bypassing the
mysterious Stieltjes transform characterization of the limiting eigenvalue distribution of

random matrices in (11) and only basing ourselves on Lemma 4.3.

5 User Capacity under Power Control

We observed in Section 3 that in the conventional receiver case, the interference of a

user is proportional to its power, and hence a strong interferer can completely overcome
a weaker signal. This is the so-called near-far problem, and a well-known consequence
is that the conventional receiver can only avoid this via tight power control. We also

observed that the MMSE receiver does not su�er arbitrarily poorly from the near-far

problem, and indeed this is one of the key motivations for the original work on multiuser
detection [24]. Nevertheless, a MMSE receiver still su�ers interference from other users,

and it follows that user capacity can be increased and power consumption reduced, if
power control is employed.

In the present section we consider the case in which all users require an SIR of exactly

��, given a processing gain of N degrees of freedom per symbol. For a given number of

users we compute the minimum power consumption required to achieve �� for all users,
and then look at the maximum number of users per degree of freedom supportable for
a given power constraint under power control. Of particular interest is the maximum

number without power constraint, which we refer to as the user capacity of the system (in

13



terms of number of users per degree of freedom.) This is the point at which saturation

occurs as we put in so many users that we drive the required power level to in�nity.

We will show that this user capacity is di�erent but �nite for both the conventional and

the MMSE receivers, showing that both are interference-limited systems. As before, our

results are asymptotic as the the processing gain N goes to in�nity.

Let us focus �rst on the conventional receiver. Under the matched �lter, Prop. 3.3 tells

us that, asymptotically, users receive the same level of interference, and hence must be

received at the same power level to get the same SIR ��. It is easy to compute that with a

processing gain of N and N� users, the common received power required, asymptotically

as N !1, for the conventional receiver is given by

Pmf (�
�) =

���2

1 � ���
(13)

For a given constraint P on the received power, the maximumnumber of users supportable

is then:
1

��
� �2

P
users/degree of freedom

The user capacity of the conventional receiver when P =1 is then

Cmf (�
�) =

1

��
users/degree of freedom (14)

Put it another way, as �! 1

��
, the system saturates and the required power level goes to

in�nity. A similar result is given in [5].

Now let us turn to the MMSE receiver. To satisfy given target SIR requirements for

each user, [10, 21, 2] showed that there is an optimal solution for which the received
power of every user is minimized; moreover, they gave an iterative algorithm to compute
it. However, here we can give an explicit solution and characterize the resulting user
capacity.

To begin, we �x the number of users per degree of freedom at �. As in the conventional
receiver case, it turns out that the system saturates if � is too high, so we �rst obtain a

necessary and su�cient condition for feasibility. The following theorem shows that in the

limit of a large number of degrees of freedom, the system is feasible if and only if the SIR
can be met with equal received powers for all users.

Theorem 5.1 If

� � 1 + ��

��

then there is no distribution F of received powers such that the SIR requirements of all

users are satis�ed, i.e.:

Q

�2 + �
R1
0 I(P;Q; ��)dF (P )

� �� for all Q in the support of F (15)
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On the other hand, if � < 1+��

��
, the SIR requirements of all users can be satis�ed and the

minimum power solution is having the received powers of all users to be

Pmmse(�
�) =

���2

1� � ��

1+��

(16)

Proof. Suppose that there is a power distribution F such that all users get ��, i.e.

Q

�2 + �
R1
0 I(P;Q; ��)dF (P )

� �� for all Q in the support of F

Let P � be the power of the weakest user in this distribution, i.e.

P � � inffP : F (P ) > 0g

and note that 8P � P �; I(P �; P �; ��) � I(P;P �; ��). Focusing on the user with received
power P �, since

P �

�2 + �
R1
0 I(P;P �; ��)dF (P )

� ��

therefore
P �

�2 + �I(P �; P �; ��)
� ��

Using the explicit expression for the e�ective interference term and rearranging terms,
the last statement is equivalent to:

P �(1� �
��

1 + ��
) � ���2

Hence,

� <
1 + ��

��

This proves the �rst part of the proposition.

Conversely, if � < 1+��

��
, then it can be easily checked that Pmmse(�

�) is positive and
satis�es

Pmmse(�
�)

�2 + �I(Pmmse(��); Pmmse(��); ��)
= ��

By Theorem 3.1, this implies that by assigning all users the same received power
Pmmse(�

�), they will all achieve the SIR requirement ��. To see that this is the minimal

solution, suppose that F is another power distribution such that the SIR requirements of

all users are satis�ed, and let P � be the power of the weakest user of this distribution. By
exactly the same argument as the proof of the �rst half of this proposition, we conclude
that:

15



P � � ���2

1� � ��

1+��

= Pmmse(�
�)

This shows that indeed the solution with equal received powers at Pmmse(�
�) is the min-

imal solution.

2

Hence, the user capacity of the system under MMSE receiver is:

Cmmse(�
�) = 1 +

1

��
users/degree of freedom: (17)

Moreover, for a given received power constraint P , the maximum number of users that
can be supported is to assign each user the same received power, and that number is given

by:

(1 + ��)(
1

��
� �2

P
) users/degree of freedom:

Contrasting (13) and (14) with (16) and (17), we note that if � is feasible for both
types of receiver, then the MMSE power consumption is less than the matched �lter power

consumption, and the MMSE has potentially much greater user capacity. Indeed, if � < 1
then we can take �� arbitrarily high without saturating the MMSE receiver, whereas the
the conventional receiver saturates as �� " 1

�
. For �xed ��, we also note that the MMSE

saturates at a higher value of �, yielding a user capacity of precisely 1 more user per
degree of freedom than the conventional receiver. On the other hand, the relative gain of
the MMSE is not so large for small values of ��.

The above user capacity results are derived in the context of random spreading se-
quences. A natural question to ask is whether one can get performance gain if we one

optimizes the choice of the sequences. In [27], it is shown that even with the optimal choice
of sequences, the user capacity (without power constraint) under the MMSE receiver is

still 1 + 1

��
users per degree of freedom. However, somewhat surprisingly, the capacity

gap between the MMSE and conventional receiver disappears under optimal sequences.

6 Multiple Classes and E�ective Bandwidths

It is straightforward to generalize our results to the case in which we have J classes, with
class j users requiring a SIR of �j. We denote the number of users of class j by �jN , and

again consider the limiting regime N " 1.

The conventional matched �lter results generalize very easily to

Pmf (j) =
�j�

2

1�PJ
j=1 �j�j
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where Pmf (j) denotes the common received power level of all users of class j (see [5]).

Thus, the user capacity constraint on feasible values of (�1; : : : ; �J) is the linear con-

straint
JX

j=1

�j�j < 1: Furthermore, if class j users have a maximum power constraint that

Pmf (j) � �Pj, for each j, then the tighter user capacity constraint:

JX
j=1

�j�j � min
1�i�J

"
1 � �i�

2

�Pi

#

emerges ([4]). It seems very reasonable to call �j the bandwidth of class j users, in degrees

of freedom per class j user. Let us denote this bandwidth by

emf (�j) � �j degrees of freedom per class j user.

We now show that the MMSE �lter results generalize in a similar manner. It is clear
in this case also that the minimal power solution consists of the same received power
for each class; let all users in class j be received at power Pj. Then the power control
equations become

Pj

�2 +
PJ

i=1 �jI(Pi; Pj; �j)
= �j j = 1; 2; : : : ; J (18)

where, as in Theorem 3.1, I(Pi; Pj ; �j) � PiPj

Pj+Pi�j
. But (18) implies that �j

Pj
is a constant,

which allows us to simplify (18) down to

Pmmse(i) =
�i�

2

1 �PJ
j=1 �j

�j

1+�j

i= 1, 2, : : : , J: (19)

The user capacity constraint for the MMSE receiver with J classes is therefore given by

JX
j=1

�j
�j

1 + �j
< 1 (20)

which is linear in �1; : : : ; �J .

As above, maximum power constraints provide tighter capacity constraints, and in
this context we note that (19) implies that

JX
j=1

�j
�j

1 + �j
= 1� �i�

2

Pmmse(i)
i = 1; 2; : : : ; J:

Thus if Pmmse(i) � �Pi is a maximumpower constraint on class i, then the linear constraint

JX
j=1

�j
�j

1 + �j
� min

1�i�J

"
1 � �i�

2

�Pi

#

17



de�nes the restricted user capacity region of the system. It seems very reasonable to

de�ne the e�ective bandwidth of class j users to be emmse(�j) degrees of freedom per

user, where

emmse(�j) � �j

1 + �j
:

Linearity in the matched �lter case is a straightforward consequence of the fact that

powers of interferers add. However, our MMSE e�ective bandwidth results are rather

surprising, and it is a consequence of the asymptotic decoupling of the interference due

to other users. For more discussions about the linearity of the user capacity region under

MMSE, please consult Appendix A.

Fig. 3 gives an example of a user capacity region for two classes of users, one with

SIR requirement 1dB and the other 10 dB. The upper line gives the asymptotic limit
for the boundary of the region, under the MMSE receiver. The simulation curve gives
the average number of class 2 users admissible as a function of the number of class 1
users in the system, for a spreading length of 64. The average number is obtained by
averaging over 100 realizations of the spreading sequences. The actual number of class 2
users depend on the realization of the spreading sequences, and will 
uctuate around this

average, as was seen in Fig. 1.

One interesting observation is that no matter how high � is, the MMSE e�ective

bandwidth of a user is upper bounded by unity. We will gain further insight into why this
is so in the next section.

7 The Decorrelator

To this point we have contrasted the performance of the MMSE receiver with that of the
conventional matched �lter receiver. It is also illuminating to compare its performance
with that of the decorrelator.

The decorrelator was in fact the �rst linear multiuser detector, introduced by Lupas
and Verdu [11]. This receiver is known to be optimal in the worst case scenario in

which interferers' powers tend to in�nity; its near-far resistance is optimal [12]. Its main
shortcoming, as we will see, is that each user has an e�ective bandwidth of 1 degree of

freedom, which can be wasteful when the SIR of the user is small. On the other hand, it
is hardly wasteful when the SIR is large.

We can write the channel equation (1) in matrix form:

Y = SX+W

where X = (X1; : : : ;XK)
t, and S = [s1; : : : ; sK] is the matrix of signature sequences. It

is well known ([11]) that the matched �lter outputs

R = StSX+ StW
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are su�cient statistics to recover the inputs X.

Consider now a further linear transformation applied to the matched �lter outputs, to

obtain

U � (StS)�1R = X+ (StS)�1StW

The overall �lter (StS)�1St is called the decorrelating receiver. If the inverse does not

exist, then the pseudo-inverse is used in its place. Observe that in the absence of external

noise the decorrelator output would be the vector X, and as such it represents the opti-

mal zero-forcing linear �lter. At this point, it is useful to provide an expression for the

covariance matrix � of the \noise" (StS)�1StW, namely

� = (StS)�1�2

The decorrelator for the user i returns Ui as an estimate of Xi. Thus, the channel for
user i is given by

Xi ! Xi +Ni

where Ni is a zero-mean, Gaussian random variable of variance �ii. The SIR for user
i is given by Pi=�ii. An important point about the decorrelator detector is that the

correlation between the noise variables (Ni)
N
i=1 is not exploited, which explains why it is

suboptimal to the MMSE receiver.

We can think of each row of (StS)�1St as a separate decorrelating �lter for each user.

For example, if we denote the �rst row of (StS)�1St by r1, then the decorrelating �lter
for user 1 is to apply rt1 to the received signal Y to obtain the decorrelator estimate
of user 1's symbol. It is insightful to look for a geometric interpretation. It turns out
that each row of (StS)�1St is the orthogonal projection of the corresponding sk onto
the subspace (spanf(sj)j 6=kg)?. For example, r1 is the orthogonal projection of s1 onto

(spanf(sj)j 6=1g)?. To see why this is so, we prove the following proposition:

Proposition 7.1 The vector r1 is the orthogonal projection of s1 onto the subspace V ,

de�ned by V � (span(fs2; s3; : : : ; sKg))?, and the SIR1 for user 1 is given by

SIR1 =
P1

�2
rtr

Proof. Let us begin by denoting the orthogonal projection of s1 onto V by v1. Since v1

lies in V , the e�ect of applying v1 to Y nulls out the interference of users 2; : : : ;K, and
the SIR under v1, which we denote by SIR

(v1)

1 , satis�es:

SIR
(v1)

1 =
P1

�2

(vt1s1)
2

vt1v1

The same applies to the decorrelator r1, since it also lies in V , which has corresponding

SIR given by

SIR
(r1)

1 =
P1

�2

(rt1s1)
2

rt1r1
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Now let SIRmmse
1 (�2) be the SIR of user 1 under the MMSE linear receiver. Since v1 is

the projection of s1 onto V , it can be seen that v1 achieves the best SIR among all linear

receivers constrained to be in V . On the other hand, the MMSE is the optimal linear

receiver overall. Hence, the following inequalities must hold:

SIR
(r1)

1 � SIR
(v1)

1 � SIRmmse
1

But it is shown in [11] that the decorrelator has the optimal asymptotic e�ciency in the

class of linear receivers, i.e.

lim
�2!0

SIR
(r1)

1 �2 = lim
�2!0

SIRmmse
1 �2;

and hence

P1

(rt1s1)
2

rt1r1
= P1

(vt1s1)
2

vt1v1

It follows that r1 must lie in the direction v1. Further, since r1� s1 is then orthogonal to
r1, we have that

rt1s1 = rt1(s1 + r1 � s1)

= rt1r1

and hence that SIR
(r1)

1 = P1
�2
rt1r1. 2

We can therefore think of the decorrelator receiver for user 1 as the orthogonal projec-
tion of the received signal onto the orthogonal complement to the interferers' signals. In
this way, interfering signals are e�ectively \nulled out" in an optimal way. We can think
of the overall matrix (StS)�1St as a bank of decorrelating receivers, one given by each

row of the matrix.

We now study the performance of the decorrelator in the asymptotic regime in which

the processing gain N tends to in�nity, the number of users is �N . The following result

was also obtained independently in [26].

Theorem 7.2 Let �
(N)

1 be the (random) SIR of the decorrelating receiver for user 1 when

the spreading length is N . Then �
(N)

1 converges to ��1 in probability as N !1, where ��1
is given by

��1 =

(
P1(1��)

�2
� < 1

0 � � 1

Proof. As in Proposition 7.1, let us denote the subspace orthogonal to the span of

fs2; s3 : : : ; sKg by V . We note that V has dimension equal to maxfN�rank(S1); 0g, where
S1 is the matrix with columns consisting of the signature sequences of users 2; 3 : : : ;K.

We also note that since the signature sequences are selected randomly, V is a random
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subspace, independent of the choice of s1. Finally, as in Proposition 7.1, we denote the

decorrelating vector for user 1 by r1.

The simplest case is � � 1. In this case, dim(V )

N
! 0, and since r1 is the orthogonal

projection of s1 onto V (Proposition 7.1), it follows that P1
�2
rt1r1 ! 0. Proposition 7.1

implies that the SIR of user 1 tends to zero in this case.

Now consider the case � � 1. In this case, Bai and Yin [1] show that the small-

est eigenvalue of the random matrix St
1S1 converges almost surely to a strictly positive

number; hence S1 is almost surely of full rank K � 1 when L is large. Thus,

dim(V )

N
! 1� �

as N " 1. But by Proposition 7.1, r1 is the orthogonal projection of s1 onto V , and we

note that s1 is independent of V . It follows from Lemma 4.2 that rt1r1 ! 1 � �. The
theorem then follows from Proposition 7.1. 2

We observe that as �! 1, i.e. the number of users per degree of freedom approach 1,
the SIR goes to zero. Geometrically, as the dimensionality of the orthogonal complement

to the span of the interference decreases to zero, the length of the projection of the
desired signal onto this orthogonal complement tends to zero, and so in the limit the
projected signal is lost in the background noise. This is the high price paid for ignoring
the background noise. In contrast, the MMSE receiver can support more users than the
number of degrees of freedom as it takes both the interference and the background noise
into account.

By comparing Theorem 7.2 and Theorem 3.1, it can be seen that the e�ective inter-
ference for an interferer on user 1 under the decorrelator is P1

�1
, which does not depend on

the power of the interferer. The theorem states that the user capacity constraint on the
system is � < 1.

We also observe that if all users require an SIR of � and employ power control then it is

su�cient for each user to be received with power at least
��2

1� �
. Thus, for a given received

power constraint �P , the maximum number of users with SIR requirement � supportable

is 1 � ��2

�P
. Similarly, for multiple classes of users with SIR requirement �j and power

constraint �Pj for each class, then the system can support �j users (per degree of freedom)

from each class if
JX

j=1

�j � min
1�j�J

"
1 � �j�

2

�Pj

#

Thus, the user capacity region under the decorrelator is given by:

JX
j=1

�j � 1 (21)

when there are no power constraints, or equivalently, when the background noise power

�2 goes to zero. Thus, each user occupies an e�ective bandwidth of 1 degree of freedom,

independent of the value of �.
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>From Theorem 7.2, it can be immediately inferred that the e�ciency of a decorrelator

in a large system with random spreading sequences is 1�� if �, the number of users per

degree of freedom, is less than 1 and zero otherwise. Since this does not depend on the

background noise power �2, this is also the asymptotic e�ciency.

It is well known [13] that the MMSE receiver has the same asymptotic e�ciency as the

decorrelator, and hence the decorrelator is optimal in this sense among all linear receivers.

However, comparing eqn. (20) and (21), it can be seen that the user capacity region under

the MMSE receiver is strictly larger than that under the decorrelator, even as the back-

ground noise goes to zero. In particular, the MMSE receiver can in general accommodate

more users than the available degrees of freedom, while the decorrelator cannot. This

apparent paradox can be resolved by noting that when � > 1, the attained SIR by the

decorrelator is zero (Theorem 7.2) while the attained SIR by the MMSE receiver is strictly

positive but bounded, as the noise power �2 goes to zero. Since the asymptotic e�ciency
only measures the rate at which the SIR goes to in�nity as �2 goes to zero, they are the
same (zero) for both receivers. On the other hand, the user capacity region quanti�es
the number of users with �xed SIR requirements a receiver can accommodate; hence the
di�erence between the decorrelator and the MMSE receiver is captured when we compare

their user capacity regions. In practice, users have target SIR requirements and hence the
user capacity region characterization seems to be a more natural performance measure
than the asymptotic e�ciency. In this context, the decorrelator remains sub-optimal even
as �2 ! 0, when � > 1.

8 Antenna Diversity

In spread-spectrum systems, diversity gain is obtained by spreading over a wider band-

width. However, there are other ways to obtain diversity bene�ts in a wireless system. A
technique, particularly e�ective for combating multipath fading, is the use of an adaptive

antenna array at the receiver. Multipath fading can be very detrimental as the received

signal power can drop dramatically due to destructive interference between di�erent paths
of the transmitted signal. By placing the antenna elements greater than half the carrier

wavelength apart, one can ensure that the received signal fades more or less independently
at the di�erent antenna elements. By appropriately weighting, delaying and combining

the received signals at the di�erent antenna elements, one can obtain a much more reli-
able estimate of the transmitted signal than with a single antenna. Such antenna arrays

are said to be adaptive as the combining depends on the strengths of the received signals
at the various antenna elements. This in turn depends on the locations of the users.

Moreover, the combining weights will be di�erent for di�erent users, allowing the array to

focus on speci�c users while mitigating the interference from other users. This is so-called
beam-forming. Using our previous results, it turns out that the user capacity of such

antenna array systems can again be characterized by e�ective bandwidths.

The following is a model for a synchronous multi-access antenna-array system:

22



Y =
KX

m=1

Xmhm +W;

Here, Xm is the transmitted symbol of the mth user, and Y is a N -dimensional vector

of received symbols at the N antenna elements of the array. The vector hm represents

the fading of the mth user at each of the antenna array. The entries are complex to

incorporate both phase and magnitude information. The vector W is complex-valued,

background Gaussian noise.

The fading is time-varying, as the mobile users move. However, this is usually at

a much slower time-scale than the symbol rate of the system. Assuming then that the

channel fading of the users can be measured and tracked perfectly at the receiver, we would

like to combine the vector of received symbols appropriately to maximize the SIR of the
estimates of the transmitted symbols of the users. The optimal linear receiver is clearly
the MMSE. Assuming that the fading of each user at each antenna element is independent
and identically distributed, we are essentially in the same set-up as for spread-spectrum

systems. Thus, for a system with a large number of antenna elements and large number
of users, we can treat each of the interfering users as contributing an additive e�ective
interference. Under perfect power control, the user capacity is characterized by sharing
the N degree of freedom among the users according to their e�ective bandwidths given by
the previous expressions for the di�erent receivers. The only di�erence here is that the

N degrees of freedom is obtained by spatial rather than frequency diversity.

These results should be compared with that of Winters et. al. [28], which showed

that for a 
at Rayleigh fading channel, a combiner which attempts to null out all the
interferers will cost one degree of freedom per interferer. This combiner is of course the
sub-optimal decorrelator, which we have shown earlier to be very wasteful of degrees of
freedom if interferers are weak. It should be noted that while Winters' result holds for the
Rayleigh model and any number of antennas, our results hold for any fading distribution,

but are asymptotic in the number of antennas.

Fig. 4 illustrates the performance of MMSE receiver under a Rayleigh fading envi-

ronment. It compares the asymptotic limit of the SIR for user 1 given by eqn. 9, as a
function of the number of users per antenna element, with actual SIR achieved depending

on realizations of the Rayleigh fading. The number of antenna elements is 128. The sim-
ilarity between Fig. 4 and Fig. 1 further emphasizes the fact that the asymptotic limit

does not depend on the interpretation of the si's as spreading sequences or as channel
fading.

9 Summary of Results and Conclusions

It is illuminating to compare the e�ective interference and e�ective bandwidths of the users
in the three cases: the conventional matched �lter, the MMSE �lter, and the decorrelating

�lter ( Fig. 5 and 6.). The e�ective interference under MMSE is non-linear, and depends
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on the received power P of the user to be demodulated as well as the achieved SIR �. The

e�ective interference under the conventional matched �lter is simplyPi, the received power

of the interferer. Under the decorrelator, the e�ective interference is P
�
, independent of

the actual power of the interferer. The intuition here is that the decorrelator completely

nulls out the interferer, no matter how strong or weak it is. The MMSE receiver, on the

other hand, is sensitive to the received power of the interferer.

Assuming perfect power control, we can de�ne e�ective bandwidths which characterize

the amount of network resource a user consumes for a given target SIR. The e�ective

bandwidths under the conventional, MMSE and decorrelating receivers are �; �

1+�
and 1

respectively. We note that the conventional receiver is more e�cient than the decorrelator

when � is small, and far less e�cient when � is large. Intuitively, at high SIR requirements,

a user has to transmit at high power, thus causing a lot of interference to other users

under the conventional receiver. Not surprisingly, since it is by de�nition optimal, the
MMSE �lter is the most e�cient in all cases. When � is small, it operates more like the
conventional receiver, allowing many users per degree of freedom, but when � is large,
each user is decorrelated from the rest, much as in the decorrelator receiver, and therefore
the interferers can still occupy no more than 1 degree of freedom per interferer. The

performance gain a�orded by the MMSE receiver over the conventional receiver depends
on the SIR at which the system is to be operated, and this in turn depends on the
data rate, amount of coding and symbol constellation size. However, due to the superior
performance of the MMSE receiver over a wide range of SIR's, it can be seen that it is
particularly suitable in a heterogeneous network with multiple tra�c types.

In the present paper, we have focused our attention on the simplest possible multi-
access CDMA model. There are many possible extensions of this work to study various

physical layer and networking layer issues. At the physical layer, an important problem
is to understand the performance of multiuser receivers in more realistic scenarios with
asynchrony, multipath fading and channel uncertainty. Under these channel imperfec-
tions, one can expect an even larger performance gap between the MMSE receiver and
the decorrelator. This is because while signals of an interferer arrive from a single direc-

tion in a synchronous system with perfect channel knowledge, the channel imperfections

typically spread the interferer's energy into multiple directions, so that nulling out all the
directions would be very wasteful, if at all possible. It is hoped that the extension of the
notions of e�ective interference and e�ective bandwidth can give insights to the perfor-

mance gain of the MMSE receiver over both the decorrelator and conventional receiver in

these situations. Some results along these lines have been obtained in [9] for asynchronous
systems.

At the networking layer, important issues to study include multiple cells and the
e�ect of tra�c burstiness such as voice activity. In fact, we believe it is already possible
to directly draw some insights into these issues from some of our present results. For

example, despite the fact that we have not addressed voice activity in an explicit way, it

is clear from Theorem 3.1 and the notion of e�ective interference that the \averaging of
voice activity" property of the conventional receiver will carry over to the MMSE receiver,

in contrast to claims made in [23]. Furthermore, we have demonstrated that simple power
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control mechanisms can be used for resource allocation in almost exactly the same way

that they are used in the IS95 standard, and this will clearly also hold in the multiple cell

scenario (indeed, see [21]). It is important to note that the e�ective bandwidth concept

we have developed for the MMSE receiver is only valid in the perfectly power-controlled

single cell case. However, the concept of e�ective interference applies with or without

perfect power control, and may prove more useful in the multi-cell context.

In a TDMA or FDMA system, the network resource is shared amongst users via

disjoint frequency and time slots, and these models provide a simple abstraction of the

resource consumed by a user at the physical layer. Such an abstraction allows a clean

separation between the physical layer and networking layer resource allocation problems,

such as call admissions control, cell hando�s and resource allocation for bursty tra�c. It

is hoped that the e�ective bandwidth results in the present paper will be a �rst step in

providing such an abstraction for systems with multiuser receivers. It must be emphasized
however that the results reported here are asymptotic in the system size. Thus, a bet-
ter understanding of the performance 
uctuations in �nite-size systems is needed before
they can be directly applied to real-time control problems such as admission control [7].
We note that a recent paper, [20], provides Central Limit theorems to characterize the

performance 
uctuations around the asymptotic limits.
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Appendices

A A Heuristic Derivation of Theorem 3.1

In this appendix, we gave an alternative and heuristic derivation of expression (4), without

invoking the Stieltjes transform characterization of the limiting eigenvalue distribution

(11). The goal is to shed more light into the form of the expression and to provide some

intuition about the decoupling of the interference from di�erent users and the consequent

linearity in the e�ective bandwidth characterization of the capacity region. The derivation

given here makes use of some ideas developed in [27] but is self-contained.

We �rst give a formula for the MMSE receiver and the associated SIR under the
MMSE receiver, alternative but equivalent to (2) and (3). First recall the channel model
in matrix form:

Y = SX+W

where S is the matrix the columns of which are the signature sequences of the users. If
X̂ is the vector MMSE estimate of X, a direct application of the orthogonality principle

E[(X̂ �X)tY] = 0 yields

X̂ = DSt
h
SDSt + �2I

i�1
Y

and the covariance matrix of the error � � X̂ �X is given by

K� = D �DSt
h
SDSt + �2I

i�1
SD (22)

where D � diag(P1; : : : ; PK) is the covariance matrix of X. Right multiplying the above

equation with D�1 and taking the trace of both sides, we get:

trace(K�D
�1) (23)

= K � trace
�
DSt

h
SDSt + �2I

i�1
S

�

= K � trace

�
SDSt

h
SDSt + �2I

i�1�
using the fact trace(AB) = trace(BA)

= K �
NX
i=1

�i

�i + �2
(24)

where �i's are the eigenvalues of the matrix SDSt. If we let

MMSEi � E[(X̂ �Xi)
2]

Pi

be the (normalized) minimum mean-square error for user i, then eqn. (24) says that

KX
i=1

MMSEi = K �
NX
i=1

�i

�i + �2
(25)
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Now it is well known that the SIR �
(N)

i and the MMSE error are related as follows (see

eg. [13]):

MMSEi =
1

1 + �
(N)

i

: (26)

Substituting this into eqn. (25) and rearranging terms, we obtain,

1

N

KX
i=1

�
(N)

i

1 + �
(N)

i

= 1� �2 1

N

NX
i=1

1

�i + �2
(27)

So far, we have not introduced any probabilistic model for the spreading sequences, and

this equation holds for every choice of the sequences and for every N . Now, let us assume

the sequences are randomly chosen, and each component is i.i.d., and consider what

happens when K;N !1, K

N
! � and the empirical distribution of the received powers

converge to F . The right-hand side of the above equation converges to

1 � �2

Z 1

0

1

� + �2
dG�(�)

where G� is the limiting eigenvalue distribution of SDSt, and by Lemma 4.3, �
(N)

i con-

verges to

��i = Pi

Z 1

0

1

� + �2
dG�(�)

Expressing everything in terms of ��1, one can expect that the limiting form of eqn. (27)
to become 3:

�

Z 1

0

P��1
P1

1 +
P��

1

P1

dF (P ) = 1 � �2��1
P1

Dividing throughout by
��1
P1

and rearranging terms gives us the desired �xed-point equation
(4):

��1 =
P1

�2 + �
R1
0

P1PdF (P )

P1+P�
�

1

:

This development allows us to understand the linearity of the e�ective bandwidth
characterization of the capacity region. First, consider the simpler case when �2 ! 0, i.e.
no power constraint. Assuming that the spreading sequences span a space of dimension
minfK;Ng. Then precisely minfK;Ng of the eigenvalues �i's are non-zero. Eqn. (25)

becomes:
KX
i=1

MMSEi = K �minfK;Ng

Note that the total MMSE of the users is a constant, irrespective of the received powers
of the users. Since the SIR of a user is a function of the MMSE error, this is the reason

3This is the heuristic step of the derivation.
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for the linearity of the capacity region with no power constraint. For the case when there

are power constraints (i.e. �2 6= 0), the situation is more subtle. Asymptotically, the

right-hand side of eqn. (25) depends on the received powers of the users only through

Z 1

0

1

�+ �2
dG�(�)

which can be interpreted as the SIR achieved by a user with unit received power.

B Proofs

Proof of Proposition 3.3:

Now,

�
(N)

1;MF =
P1(s

t
1s1)

2

�2(st1s1)
2 +

PK
i=2 Pi(s

t
1si)

2
:

Clearly (st1s1)
2 converges to 1 in probability, by the weak law of large numbers. We now

look at the interference from the other users. Consider a scaled version of the cross-

correlation between the signature sequences of user 1 and user i:

�i � 1p
N

NX
k=1

V1;kVi;k i = 1; 2; : : : ;K

where si =
1p
N
(Vi1; : : : ; ViN )

t. Also, de�ne �P (K) = 1

K

PK
i=1 Pi: Let us �rst condition on a

random realization of powers P1; P2; : : :. Then

Var (
KX
i=2

Pi�
2
i jP1; P2; : : :) =

KX
i=2

KX
j=2

E

2
4
0
@Pi
N
(
X
k1

V1;k1Vi;k1)
2 � �P (K)

1
A
0
@Pj
N
(
X
k2

V1;k2Vj;k2)
2 � �P (K)

1
A jP

3
5

(28)

By expanding out the product, we obtain that for i 6= j, the term

E

2
4
0
@Pi
N
(
X
k1

V1;k1Vi;k1)
2 � �P

1
A
0
@Pj
N
(
X
k2

V1;k2Vj;k2)
2 � �P

1
A jP1; P2; : : :

3
5

equals

PiPj

N2
E[(
X
k

V1;kVi;k)
2(
X
k

V1;kVj;k)
2]�

�PPj

N
E[(
X
k

V1;kVj;k)
2]�

�PPi

N
E[(
X
k

V1;kVi;k)
2]+ �P 2 (29)

Expanding out the �rst term on the right hand side, we obtain

X
k1

X
k2

X
k3

X
k4

E[Vi;k1Vi;k3 ]E[Vj;k2Vj;k4 ]E[V1;k1V1;k2V1;k3V1;k4 ]
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Now each of these expectations is zero except when k1 = k3 and k2 = k4, so it reduces toX
k1

X
k2

E[V 2
1;k1

V 2
1;k2

]. Now, N(N � 1) of these terms are unity, and N are E[V 4
1;1], which is

O(1), so it follows that the �rst term on the right hand side of (29) is PiPj +O(1=N). In

a similar manner, the second term can be shown to be Pj �P and the third term is Pi �P .

Returning to the expansion of (28), we note that for all i = 2; : : : ;K,

E

2
64
0
@Pi
N
(
X
k1

V1;k1Vi;k1)
2 � �P

1
A

2

jP1; P2; : : :

3
75

equals
P 2
i

N2
E[(
X
k

V1;kVi;k)
4]� Pi �P

N
E[(
X
k

V1;kVi;k)
2] + �P 2 (30)

Expanding out the �rst term we obtain

X
k1

X
k2

X
k3

X
k4

E[V1;k1V1;k2V1;k3V1;k4Vi;k1Vi;k2Vi;k3Vi;k4 ]

and each of these expectations is zero, unless k1 = k2 and k3 = k4 or k1 = k3 and k2 = k4
or k1 = k4 and k2 = k3. In each of these nonzero cases, the expectations are O(1) and
there are O(N2) of them, so the �rst term of (30) is O(1). Similarly, for the other two
terms. We conclude that

Var (
1

K

KX
i=2

Pi�
2
i jP1; P2; : : :) =

1

K2

KX
i=2

KX
j=2

(PiPj � Pj �P
(K) � Pi �P

(K) + ( �P (K))2) +O(1=N)

as N " 1. But by our assumption that the empirical distribution function of powers
converges to a deterministic limit, it follows that

1

K2

KX
i=2

KX
j=2

(PiPj � Pj �P
(K) � Pi �P

(K) + ( �P (K))2)! 0

and hence that for any � > 0; lim supK Var ( 1

K

PK
i=2 Pi�

2
i jP1; P2; : : :) < �, and this is true

for any realization P1; P2; : : :. Hence, for all � > 0; lim supK E[( 1

K

PK
i=2 Pi�

2
i � �P (K))2] <

�. But �P (K) ! R1
0 PdF (P ), which implies mean-square convergence of 1

K

PK
i=2 Pi�

2
i toR1

0 PdF (P ), and hence convergence in probability. So we have

KX
i=2

Pi(s
t
1si)

2 =
1

N

KX
i=2

Pi�
2
i ! �

Z 1

0

PdF (P )

in probability. We conclude that

�
(N)

1;MF !
P1

�2 + �
R1
0 PdF (P )

in probability

2
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Proof of Lemma 4.2:

Let Y � kQXk2. We compute the �rst and second moments of Y conditional on an

arbitrary realization of Q = (qij).

E[Y jQ] = E

2
64 mX
i=1

0
@ nX
j=1

qijVj

1
A

2
3
75

= E

2
4 mX
i=1

nX
j=1

nX
k=1

qijqikVjVk

3
5

=
mX
i=1

nX
j=1

q2ij

= m;

E[Y 2jQ] = E

2
64
8><
>:

mX
i=1

0
@ nX
j=1

qijVj

1
A

2
9>=
>;

2375

= E

2
4 mX
i=1

mX
j=1

nX
k=1

nX
l=1

nX
r=1

nX
s=1

qikqilqjrqjsVkVlVrVs

3
5

Since the Vi's are independent and zero mean, the terms in the expectation above are
zero whenever it has one random variable which has a di�erent index than the other three.

Hence,

E[Y 2jQ]
=

mX
i=1

mX
j=1

nX
k=1

q2ikq
2
jkE[V

4
k ] +

mX
i=1

mX
j=1

X
k 6=r

q2ikq
2
jrE[V

2
k ]E[V

2
r ] + 2

mX
i=1

mX
j=1

X
k 6=l

qikqilqjkqjlE[V
2
k ]E[V

2
l ]

=
mX
i=1

mX
j=1

nX
k=1

q2ikq
2
jk

�
E[V 4

k ]� 3
�
+

mX
i=1

mX
j=1

nX
k=1

nX
r=1

q2ikq
2
jr + 2

mX
i=1

mX
j=1

nX
k=1

nX
l=1

qikqilqjkqjl

=
mX
i=1

mX
j=1

nX
k=1

q2ikq
2
jk

�
E[V 4

k ]� 3
�
+

mX
i=1

mX
j=1

(
nX

k=1

q2ik)(
nX

r=1

q2jr) + 2
mX
i=1

mX
j=1

(
nX

k=1

qikqil)
2

=
nX

k=1

(
mX
i=1

q2ik)
2
�
E[V 4

k ]� 3
�
+m2 + 2m

the last step using the orthonormality of the rows of Q. Now if we add orthonormal rows
to Q to construct a n by n orthogonal matrix Q0, then the columns of Q0 are orthonormal.
This implies that for every column k,

mX
i=1

q2ik � 1

Hence
E[Y 2jQ] � njE[V 4

1 ]� 3j+m2 + 2m
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and

E[(Y �m)2jQ] � njE[V 4
1 ]� 3j + 2m (31)

and hence

E[(Y �m)2] � njE[V 4
1 ]� 3j + 2m

Using Chebychev's inequality, we have for every � > 0,

Pr

�
jY
n
� m

n
j > �

�
� E[(Y �m)2]

n2�2

� njE[V 4
1 ]� 3j+ 2m

n2�2

� jE[V 4
1 ]� 3j+ 2

�2
� 1
n
:

Picking the constant C � jE[V 4
1 ]�3j+2

�2
yields the desired result.

2

Proof of Lemma 4.3:

>From eqn. (3),

�
(N)

1 = st1(S1D1S
t
1 + �2I)�1s1P1

Let �
(N)

1 ; : : : ; �
(N)

N be the eigenvalues of S1D1S
t
1. Write S1D1S

t
1+ �2I as Qt�Q, where

� = diag(�
(N)

1 + �2; : : : ; �
(N)

N + �2). Let u(N) = Qs1. Then

�
(N)

1 =
NX
i=1

[u
(N)

i ]2P1

�
(N)

i + �2

Fix a �1 > 0. Pick a �nite partition I = fI1; I2; : : : ; IMg of (0;1) such that

MX
k=1

G�(Ik)
P1

l(Ik) + �2
�
Z 1

0

P1

�+ �2
dG�(�) < �1 (32)

and Z 1

0

P1

� + �2
dG�(�)�

MX
k=1

G�(Ik)
P1

r(Ik) + �2
< �1 (33)

where l(Ik); r(Ik) are the left and right endpoints of the interval Ik respectively.

Let GN be the empirical distribution of the eigenvalues of S1D1S
t
1. Fix �2 > 0, and

consider the events:
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E1 =

8><
>:
�������

X
fi:�(N)

i
2Ikg

(u
(N)

i )2 �GN (Ik)

������� <
�2

M
for all k = 1; : : : ;M

9>=
>;

E2 =

(
jGN (Ik)�G�(Ik)j < �2

M
for all k = 1; : : : ;M

)

If both events E1 and E2 hold, then we have

�
(N)

1 =
NX
i=1

u
(N)

i P1

�
(N)

i + �2

�
MX
k=1

(
X

fi:�(N)

i
2Ikg

(u
(N)

i )2)
P1

l(Ik) + �2

� P1

MX
k=1

G�(Ik) + 2 �2
M

l(Ik) + �2

�
Z 1

0

P1

� + �2
dG�(�) + �1 +

2�2

�2
from eqn. (32)

and similarly,

�
(N)

1 �
MX
k=1

(
X

fi:�(N)

i
2Ikg

(u
(N)

i )2)
P1

r(Ik) + �2

� P1

MX
k=1

G�(Ik)� 2 �2
M

l(Ik) + �2

�
Z 1

0

P1

� + �2
dG�(�)� �1 � 2�2

�2
from eqn. (32)

Hence, given any � > 0, one can pick �1; �2 > 0 and M such that:
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#

By Theorem 4.1, each of the probabilities in the sum go to zero as N ! 1. Hence

Pr[Ec
2]! 0. Now,
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which approaches 0 as N !1. Hence, from eqn. (34), we can conclude that
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Asymptotic Result

Figure 1: Randomly generated MMSE SIR's for user 1 compared to asymptotic limit eqn.
(8) in the equal-power regime, for N = 32; 64; 128. Here, P

�2
= 20dB.
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SIR across users 
Asymptotic result
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Figure 2: Randomly generated MMSE SIR's across users for one realization of the spread-

ing sequences. Here, spreading length N = 128, number of users K = 80 and P

�2
= 20dB.
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Asymptotic results of capacity region

Figure 3: User capacity region for two classes of users, with P1
�2

= 29dB; P2
�2

= 20dB
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Asymptotic Result
Realised SIR     
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Figure 4: Random SIR's for user 1 in Rayleigh fading environment, compared to asymp-
totic limit eqn. (8) Here, P

�2
= 20dB.

40



interference
effective

received power of interferer Pi

Imf (Pi) = Pi

Immse(Pi) =
PPi

P+Pi�

Idec(Pi) =
P

�

Figure 5: E�ective interference for the 3 receivers as a function of interferer's received
power Pi. Here,P is the received power of the user to be demodulated, and � is the SIR
achieved.
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Figure 6: E�ective bandwidths for 3 receivers as a function of SIR.
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