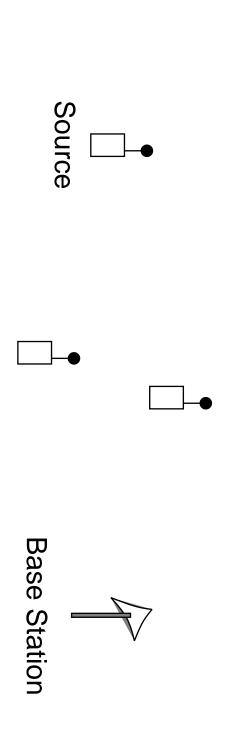
Motivation

Why do we care about relay situations?



Two effects: Source saves power by transmitting to the relays instead of the base station.

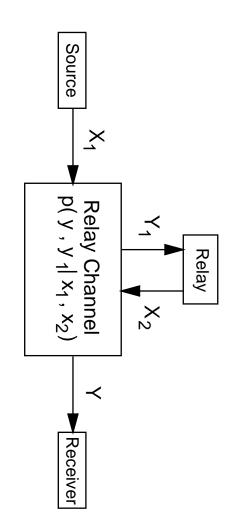
Relays get an effective power boost by cooperating in transmitting to the base station.

Motivation

Why do we care about relay situations?

Independent observations are extremely useful. Deep-space probe has very weak signal-to-noise ratio.

Relay channel model



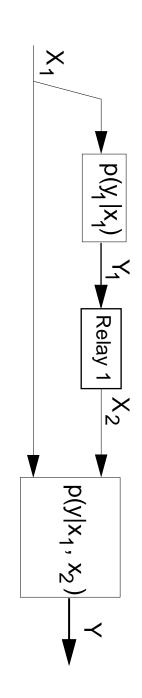
Relay transmission $x_{2,k}$ affects "next" relay observation $\mathbf{Y}_{1,k}$.

Current relay transmission can depend on all past observations:

$$\mathbf{X}_{2,k} = f(\mathbf{Y}_1^{k-1}).$$

receiver Sole purpose of relay is to help get source information to the

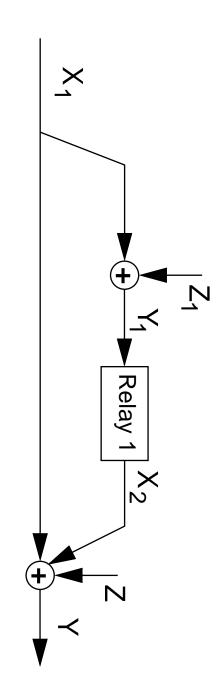
A nice class of relay channels



The input X_1 is broadcast to both relay and receiver.

signals. The receiver sees \mathbf{Y} , a noisy combination of source and relay

In the Gaussian case...

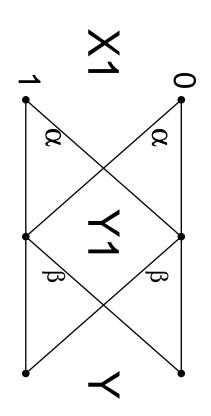


source and relay carrier phases at the receiver. This discrete-time model would require synchronization of the

On degraded relay channels

Physically degraded if $p(y_1, y|x_1, x_2) = p(y_1|x_1, x_2) \cdot p(y|y_1, x_2)$.

Y is a noisy version of the actual outcome $Y_1 = y_1$.



This is very unnatural in the Gaussian case considered in the paper.

Physically degraded concept is useful for feedback situations:

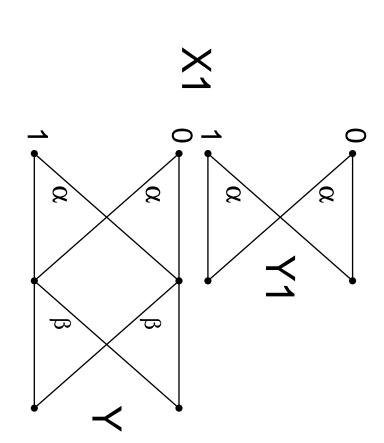
Relay gets Y fed back perfectly so that Y_1 is really (Y_1, Y) .

More on degraded relay channels

A more natural class is stochastically degraded:

$$p(y|x_1, x_2) = \sum_{y_1} p(y_1|x_1, x_2) \cdot t(y|y_1, x_2)$$

for some transition matrix $t(\cdot)$.



The stochastically degraded class is still an open problem.

A general achievability scheme

Choose $p(x_1, x_2) = p(x_2) \cdot p(x_1|x_2)$.

$$R = \min \left[I(\mathbf{X}_1, \mathbf{X}_2; \mathbf{Y}), I(\mathbf{X}_1; \mathbf{Y}_1 | \mathbf{X}_2) \right]$$

There are 2^{nR} messages, w.

Randomly and uniformly partition these into 2^{nR_0} bins, s(w).

There are 2^{nR_0} codewords $x_2(s)$ for sending bin index over

 $\mathbf{X}_2 \to \mathbf{Y}$ channel, with \mathbf{X}_1 being treated as noise.

Achievability approach

<u>Idea:</u>

First stage: Relay learns exact message w_k .

Receiver forms list of possible messages $\mathcal{L}(y_k)$.

Second stage: Relay sends codeword associated with bin of message w_k , $x_2(s(w_k))$.

Receiver finds unique message in $\mathcal{L}(y_k) \cap s(w_k)$.

Code structure:

Generate 2^{nR_0} codewords for the relay $\sim p(x_2)$, indexed $x_2(s)$.

 $\sim p(x_1|x_2(s)).$ For each such bin codeword, generate 2^{nR} codewords for the source

Steps in the achievability proof

- Relay decodes the correct message w_{k+1} if $R < I(X_1; Y_1|X_2)$.
- 2 Receiver decodes the correct bin of message w_k , $s(w_k)$, if $R_0 < I(X_2; Y)$.
- w_k is the unique message in $\mathcal{L}(y_k) \cap s(w_k)$ if $R < I(X_1; Y|X_2) + R_0$.

Basically, step (3) works as follows: For an incorrect message w,

$$\operatorname{Prob}(w \in \mathcal{L}(y_k)) \leq 2^{-n(I(X_1;Y|X_2)-7\epsilon)}.$$

Union bound: Prob
$$(\exists \ w \neq w_k, \ w \in \mathcal{L}(y_k) \cap s(w_k))$$

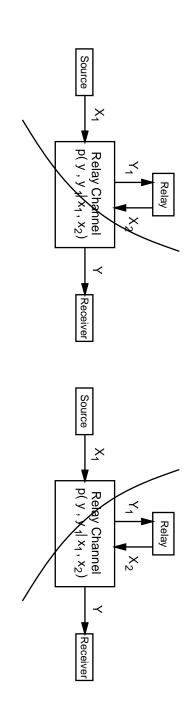
 $\leq (2^{nR}) \cdot (2^{-n(I(X_1;Y|X_2)-7\epsilon)}) \cdot (2^{-nR_0}).$

A general converse statement

For some $p(x_1, x_2)$,

$$R \le \min [I(X_1, X_2; Y), I(X_1; Y_1, Y | X_2)]$$

memoryless channel. These are basically information-theoretic cut-sets for a



memorylessness of the channel, and $X_{2,k} = f(Y_1^{k-1})$. The derivation follows from basic identities/inequalities,

Details available upon request!

Physically degraded channel converse

Start with the general converse:

$$R \leq [I(X_1, X_2; Y), I(X_1; Y_1, Y | X_2)].$$

Since $X_1 \to (X_2, Y_1) \to Y$,

$$\Rightarrow H(X_1|X_2,Y_1,Y) = H(X_1|X_2,Y_1).$$

I.e., Y yields no useful information about X_1 once we know Y_1 (and X_2).

So
$$I(X_1; Y_1, Y | X_2) = I(X_1; Y_1 | X_2)$$
, and thus
$$R \leq [I(X_1, X_2; Y), I(X_1; Y_1 | X_2)].$$

Degraded Gaussian channel achievability

$$X_2 \sim \mathcal{N}(0, P_2)$$
 \leftarrow relay codebook for current msg $X_{10} \sim \mathcal{N}(0, \alpha P_1)$ \leftarrow source codebook for next msg $X_1 = X_{10} + \sqrt{\frac{(1-\alpha)P_1}{P_2}} \ X_2 \leftarrow$ actual source codeword

Note that
$$\mathbb{E}\left\{ (X_1 + X_2)^2 \right\} = \alpha P_1 + (\sqrt{P_2} + \sqrt{(1 - \alpha)P_1})^2$$
.

relay codeword (old message) plus an independent codeword (new message). In the code construction, the source sends a scaled version of the

The common parts coherently combine at the receiver.

Evaluating the achievable rates

For any $\alpha \in [0,1]$ we can achieve

$$R = \min \left[0.5 \log_2 \left(1 + \frac{P_1 + P_2 + 2\sqrt{(1 - \alpha)P_1P_2}}{N_1 + N_2} \right), 0.5 \log_2 \left(1 + \frac{\alpha P_1}{N_1} \right) \right]$$

Converse for degraded Gaussian channel

(1) Start with $nR \leq \sum I(X_{1,i}; Y_{1,i}|X_{2,i})$

convexity and Jensen's inequality: Gaussians maximize entropy under second moment constraint,

$$R \le 0.5 \log \left(1 + \frac{\frac{1}{n} \sum \mathbb{E} \left\{ \text{var}(X_{1,i} | X_{2,i}) \right\}}{N_1} \right)$$

$$\le 0.5 \log \left(1 + \frac{P_1 - \frac{1}{n} \sum \mathbb{E}_{X_{2,i}} \left\{ \left(\mathbb{E}_{X_{1,i} | X_{2,i}} \left\{ X_{1,i} | X_{2,i} = x_{2,i} \right\} \right)^2 \right\}}{N_1}$$

$$= 0.5 \log \left(1 + \frac{\alpha P_1}{N_1} \right).$$

Converse for degraded Gaussian channel

(2) Start with $nR \leq \sum I(X_{1,i}, X_{2,i}; Y_{1,i})$

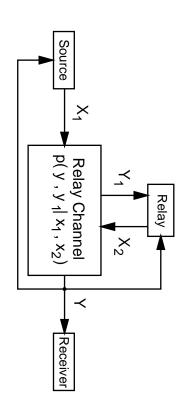
Similarly, with Gaussian entropy and convexity,

$$R \le 0.5 \log \left(1 + \frac{P_1 + P_2 + \frac{2}{n} \sum \mathbb{E} \left\{ X_{2,i} X_{1,i} \right\}}{N_1 + N_2} \right)$$

With some careful manipulation, it can be shown that

$$R \le 0.5 \log \left(1 + \frac{P_1 + P_2 + 2\sqrt{(1 - \alpha)P_1P_2}}{N_1 + N_2} \right).$$

General relay channel with feedback



Apply Theorem 1 to achieve

min
$$[I(X_1, X_2; Y), I(X_1; (Y_1, Y)|X_2)]$$

The converse follows exactly as before.

A second achievability scheme (Theorem 6)

Choose $p(x_1), p(x_2), \text{ and } p(\hat{y}_1|y_1, x_2).$

Provided $I(X_2;Y) \geq I(Y_1;Y_1|X_2,Y)$, we can achieve

$$R = I(X_1; \widehat{Y}_1, Y | X_2).$$

There are 2^{nR} messages, w.

with X_1 being treated as noise There are 2^{nR_0} codewords $x_2(s)$ for the noisy channel $\mathbf{X}_2 \to \mathbf{Y}$,

codewords for the relay observation. For each of these, there are $2^{n\hat{R}}$ quantization/rate-distortion

partitioned into 2^{nR_0} bins, s(w). All $2^{n(\hat{R}+R_0)}$ quantization codewords are randomly and uniformly

Second achievability approach

<u>Idea:</u>

First stage: Source transmits new message $x_1(w_k)$.

Relay transmits bin codeword $x_2(s_{k-1})$ (old info).

Relay quantizes $y_{1,k}$ with codebook $\{\hat{Y}_1|s_{k-1}\}$.

Receiver decodes bin codeword $x_2(s_{k-1})$.

Receiver generates list of possible relay repr. vectors $\mathcal{L}(y_k)$ consistent with y_k and $x_2(s_{k-1})$.

Second stage: Relay sends bin codeword $x_2(s_k)$.

 $\mathcal{L}(y_k) \cap s_k$ contains only the correct $\hat{y}_1 | s_{k-1}$.

Receiver decodes message with the pair of observations $(\hat{y}_{1,k}, y_k)$.

Steps in the achievability proof

- Relay has enough repr. vectors to cover $Y_1|x_2$ if $\widehat{R} > I(\widehat{Y}_1; Y_1|X_2)$ (source coding with side information strong typicality required).
- Receiver decodes the correct bin codeword if $R_0 < I(X_2; Y)$.
- Receiver decodes correct $\hat{y}_{1,k}|x_2(s)$ if $\hat{R} < I(\hat{Y}_1;Y|X_2) + R_0$.
- Receiver decodes correct message w if $R < I(X_1; Y_1, Y | X_2)$.

Step (3) works as follows:

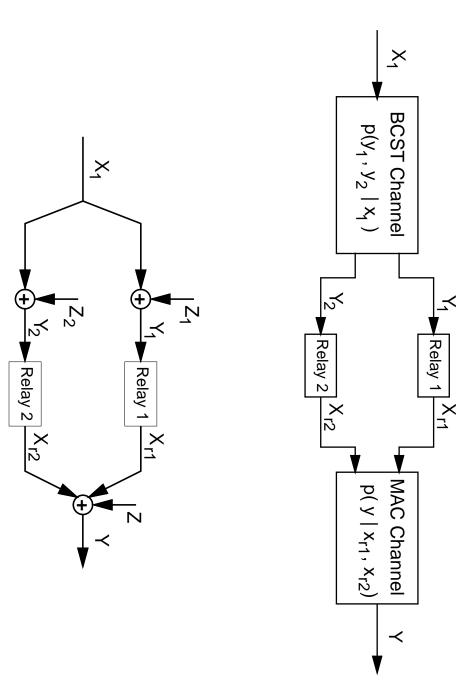
For an incorrect representation vector \hat{y}_1 ,

Prob((
$$\hat{y}_1, y$$
) typical $|x_2| \le 2^{-n(I(\hat{Y}_1; Y|X_2) - 7\epsilon)}$.

Union bound: Prob
$$(\exists \hat{y}_1 \neq \hat{y}_{1,k}, \hat{y}_1 \in \mathcal{L}(y_k) \cap s(w_k))$$

 $\leq (2^{n\hat{R}}) \cdot (2^{-n(I(\hat{Y}_1;Y|X_2)-7\epsilon)}) \cdot (2^{-nR_0}).$

An easier model to consider



Why the double relay network?

may not be desirable. Received power drops off rapidly with distance, so a direct path

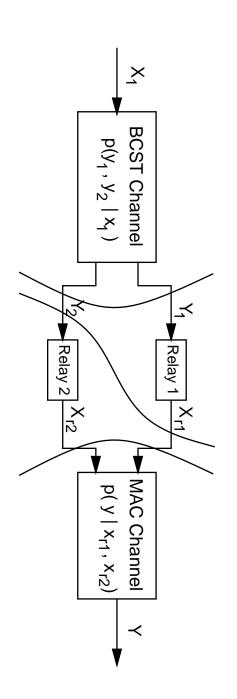
Synchronization in sending relevant information to the receiver.

we can focus on the main issue: There no longer seems a need for a two-stage coding procedure, so

How to design the cooperation in a noisy multi-terminal system?

Double relay network

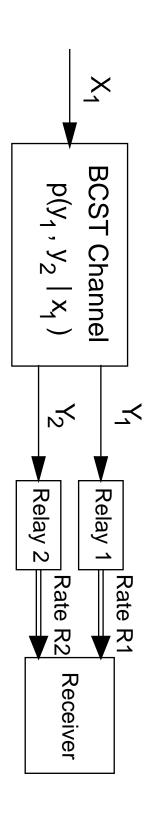
What limits communication is very difficult to understand. We can still take "cut-sets", but they are loose:



A simple model that must be understood

by picking a point in the (independent message) capacity region. We can turn an arbitrary MAC channel into a pair of noiseless links

situation. Therefore we must first understand what is limiting this simpler



Gaussian double relay network

simple amplification at the relays has excellent performance: When the multi-access side is good in a symmetric network,

$$X_{r1} = k_1 \cdot Y_1 = k_1 \cdot (X_1 + Z_1),$$

 $X_{r2} = k_2 \cdot Y_2 = k_2 \cdot (X_2 + Z_2).$

We can use single-user techniques / codes with this approach.

Even though neither relay decodes, there is a core component X_1 which coherently combines at the receiver.

extremely weak. Perfect scheme for the deep-space satellite, where the source is

General converse details

$$I(W;Y) \le \sum H(Y_i) - H(Y_i|X_{1,i}, X_{2,i}, W, Y^{i-1}) = \sum I(X_{1,i}, X_{2,i}; Y_i).$$

and

$$I(W;Y) \le I(W;Y_1,Y) = \sum H(W|Y_1^{i-1},Y^{i-1}) - H(W|Y_1^i,Y^i) \quad (\dagger)$$

$$X_{2,i} = f(Y_1^{i-1}) \Rightarrow \quad H(W|Y_1^{i-1},Y^{i-1}) = H(W|Y_1^{i-1},Y^{i-1},X_{2,i}).$$

Therefore,

$$(\dagger) \leq \sum I(W; Y_{1,i}, Y_i | Y_1^{i-1}, Y^{i-1}, X_{2,i})$$

$$\leq \sum H(Y_{1,i}, Y_i | X_{2,i}) - H(Y_{1,i}, Y_i | X_{2,i}, X_{1,i})$$

$$= \sum I(X_{1,i}; Y_{1,i}, Y_i | X_{2,i}).$$