ON NETWORKS OF NOISY GATES

{eﬁs.’zzh

e s 2 s
7 gl s

NP

Nicholas Pippenger
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120

ABSTRACT: We show that many Boolean functions (including,
in a certain sense, "almost all" Boolean functions) have the
property that the number of noisy gates needed to compute
them differs from the number of noiseless gates by at most a
constant factor. This may be contrasted with results of von
Neumann, Dobrushin and Ortyukov to the effect that (1) for
every Boolean function, the number of noisy gates needed is
larger by at most a logarithmic factor, and (2) for some Boole-
an functions, it is larger by at least a logarithmic factor.

1. Introduction

The study of networks of noisy gates was inaugurated by
von Neumann [N].in 1952. One of the central results of this
study (argued heuristically by von Neumann and proved rigor-
ously by Dobrushin and Ortyukov [DO2] in 1977) is the follow-

ing:

Theorem A: A function computed by a network of c¢ noiseless

gates can be computed by a network of O(c log c) noisy gates.

We shall not formulate this theorem more precisely here; a
stronger result is proved as Theorem 3.1 below. Considerable
effort was expended in trying to replace "O(c log ¢)" by "O(c)"
in Theorem A, until Dobrushin and Ortyukov [DO1] proved the

following:

Theorem B: Any network of noisy gates that computes the sum

(mod 2) of n variables must have Q(n log n) gates.

In this theorem, it may be assumed that the noisy gates inde-
pendently fail with some fixed probability ¢>0 and that the

network has error probability at most some fixed §<1/3. Since

0272-5428/85/0000/0030$01.00 © 1985 IEEE

30

this function can obviously be computed by a network of O(n)
noiseless gates, it follows that the replacement described above

is not in general possible.

Our main results in this paper show that for a variety of
functions O(c) gates suffice: for these functions the complexity
in terms of noisy gates is the same, to within a constant factor,
as the complexity in terms of noiseless gates. We give both
specific examples and generic classes of functions (including the
generic class of "almost all" functions) having this property. In
view of the age of this problem, it seems to us remarkable that

these are the first examples of this phenomenon in the litera-

ture.

A subsidiary goal of this paper is to give explicit (rather
than "probabiliistic") constructions. On the other hand, we

have made no attempt to obtain the best possible (or even

"reasonable") constant factors.

2. Reliable Computation in the Presence of Noise

Our goals in this section are threefold. First, we shall
discuss models for computation in the presence of noise, recall-
ing the formulation of von Neumann [N] (which we shall call
"weak'" computation) and introducing a new formulation
(which we shall call "strong" computation). Second, we shall
discuss the transfer of results from one "basis" to another and

from one "error level" to another. Third, we shall reprove the

result of von Neumann to the effect that reliable computaﬁon

in the presence of noise is possible.

We shall assume that the notions of a basis (a set of Boole-
an functions), of a network and a formula over a basis, and of
the depth and size of a network are known. If the gates of a
network compute Boolean functions, then the network may be

be regarded as computing a Boolean function. Similarly, if the

gates of a network compute independent stochastic functions
over any domain, then the network may be regarded as com-

puting a stochastic function over that domain.

Let B={0, 1} be the Boolean domain. We shall say that a
stochastic function g:BX—B is the e-perturbation of a function

f:Bk=B if, for every xeBK, the probability that f(x)=g(x) is

exactly 1-e. We shall say that g e-approximates f if, in these

circumstances, this probability is at least 1-¢.

We shall say that a network weakly (e, 8)-computes a Boole-
an function f if, when the functions computed by the gates of
the network are replaced by independent stochastic functions
that are their e-perturbations, the network computes a
8-approximation to f. This is the definition of computation by
noisy networks introducted by von Neumann [N] and used by
Dobrushin and Ortyukov [DO1, DO2] in the proof of Theorems
A and B. For proving lower bounds (as in Theorem B), the
weakest definition of computation is (other things being equal)
the best. For proving upper bounds (as in Theorem A), howev-
er, this definition is open to certain objections, the gravest of
which is the following. A network that weakly (e, §)-computes
a function need not compute it in the ordinary sense. Thus, the
complexity of computing a function with a noisy network may
be less than the complexity of computing it with a noiseless

network. (This is due simply to the fact that randomized algor-

ithms may be used by noisy networks for weak computation.)

31

This objection could be met by substituting
"e-approximations" for "e-perturbations" in the definition (and

indeed the proof of Theorem B in [DO2] supports this change).

We shall introduce an even stronger definition of computation,
however; one that not only overcomes the above objection but
also supports smooth change of basis and error level theorems.
Of course, for proving upper bounds (as is our goal in this pa-
per) the strongest definition of computation is (other things

being equal) the best.

By a regime we shall mean a pair (A, h), where A is a set
called the domain and h:A-+B is a map called the interpretation.
For each k, we shall define hk:Ak+ Bk by componentwise appli-
cation of h. Given a regime (A, h), we shall say that a stochas-
tic function g:AK— A is an e-approximation to a function f:Bk-+B
if, for every xeAk, the probability that h(g(x))=f(hk(x)) is at
least 1-e.

(Note that this agrees with our earlier definition if

we take A=B and h to be the identity map.)

We shall say that a network strongly (e, §)-computes a func-
tion f if, for every regime, when the functions computed by the
gates of the network are replaced by independent stochastic
functions over the domain of the regime that are their
then the network

e-approximations, computes a

S-approximation to f.

We shall say that a basis Q is universal if for every Boolean

function f there is a network over Q that computes f. It is well

known (see, for example Muller iM3]) that if Q is finite and Q’
is universal, then there exists a constant C such that, for every
network over Q of size c, there is a network over Q’ of size at
most Cc that computes the same function. This fact greatly
simplifies the complexity theory of Boolean functions, since (as

long as constant factors are unimportant) theorems may be

proved over any convenient finite universal basis and transfered

to other finite universal bases without additional effort. We
seek to extend this principle to noisy networks so as to accomo-

date not only changes in the basis but also changes in the error

levels.

Theorem 2.1: Let Q be a finite basis and let R be a universal
basis. Then there exists a constant C such that for every net-
work over Q of size ¢ that strongly (e,)-computes a function f,
there is a network over R of size at most Cc that strongly (e/C,

8)-computes f.

Let Q be a universal basis. We shall say that ¢>0 is good
for Q if there exist a §<1/2 such that for every Boolean func-
tion there is a network over Q that strongly (e, §)-computes
that function. Let eq(Q) denote the supremum of all >0 such

that e is good for Q.

Theorem 2.2: Let Q be a finite universal basis and suppose
0<{<n<eg(Q). Then for every p<1/2 there are constants
p<0<1/2, C and E such that for every network over Q of size ¢
that strongly (&, p)-computes a function f, there is a network

over Q of size at most Cc+E that strongly (», o)-computes f.

Let Q be a universal basis and let ¢ be good for Q. We
shall say that §<1/2 is good for (Q, &) if for every Boolean
function there is a network over Q that strongly (e,
§)-computes that function. Let §3(Q, ¢) denote the infemum of

all §<1/2 such that § is good for (Q, ¢).

Theorem 2.3: Let Q be a universal basis, let £>0 be good for Q
and suppose 8,(Q, €)<£é<n<1/2. Then there exist constants C
and E such that for every network over Q of size c that strong-
ly (e, n)-computes a function f, there is a network over Q of

size at most Cc+E that strongly (e, £)-computes f.

The proofs of these three theorems are routine and will be

32

omitted in this preliminary version. Taken together, they allow
us (as long as constant factors are unimportant) to prove theo-
rems over any convenient basis and for any convenient error
levels. We may then proceed to any universal basis Q by Theo-

rem 2.1, to any ¢ good for Q by Theorem 2.2 and to any & good

for (Q, €) by Theorem 2.3, never affecting the size by more

than a constant factor.

We shall rely on Theorems 2.1-3 to justify some abuse of
language in the remainder of this paper. If we say that a
"noiseless network" or a network of "noiseless gates'" computes
a function, we shall mean that it computes that function in the '
ordinary sense. If we say that a "noisy network” or a network
of "noisy gates" computes a function, we shall mean that it
strongly (e, §)-computes that function for some £>0 and 8<1/2
that are either immaterial or specified by context. We shall

speak of noisy gates "failing" with probability at most ¢, and of

noisy networks computing with "error probability" at most 8.

We have yet to show that any >0 is good for any finite Q.
We shall do this now. In fact, we shall do more: we shall show
that for every finite universal Q there is a constant A>0 such

that every §>0 is good for (Q, A5).

Theorem 2.4: For every finite universal basis Q there are con-
stants A and D such that, for every §>0 and every e<A$, every
function that can be computed by a noiseless network over Q of
depth d can also be strongly (e, &)-computed by a noisy net-

work over Q of depth at most Dd.

Let Qg denote the finite universal basis containing all 3-
argument Boolean functions. We shall begin by proving Theo-

rem 2.4 in the special case Q=Q.

Lemma 2.5: For every 0<8<1/96 and every e<8/2, every func-

tion that can be computed by a noiseless network over Qg of

depth d can also be strongly (e, §)-computed by a noisy net-
work over Qg of depth at most 2d.

Proof: The proof follows the lines of that of von Neumann [N].
We may assume that we are given a noiseless formula over Qg
(since for every network there is a formula of the same depth
that computes the same function) and construct a noisy formula

over Qg (since every formula is a network).

We shall proceed by induction on d. For d=1 the lemma is

trivial. Suppose that d>2. Let the noiseless formula be
F=¢(F;, F;, F3), where ¢ is a 3-argument Boolean function and
F;, 1<i<3, are noiseless formulae of depth at most d-1. By
inductive hypothesis, there are noisy formulae Gj, 1<i<3, of
depth at most 2d-2 that compute the same functions as F;,
1<i<3, with error probability at most 8. Thus the noisy formu-
la G=¢(Gy, G,, G3) has depth at most 2d-1 and computes the
same function as F with error probability at most 38+¢<46.

Let ¢ denote the 3-argument majority function. The noisy

formula ¢(G, G, G) has depth at most 2d and computes the

same function as F with error probability at most

3(48)2+:=4882+¢. Since 6<1/96 and £<8/2, 4862+¢<6. [

The proof of Theorem 2.4 from Lemma 2.5 is routine and

will be ommited from this preliminary version.

Corollary 2.6: The n-argument majority function can be comput-
ed by a noisy network of size O(n7).

Proof: The carry and sum of a 1-bit full adder are 3-argument
Boolean functions, and thus are computed by noiseless net-
works over Qg of depth 1. It follows that, for every k, the
(2k-1)-argument majority function can be computed by a noise-
less network over Qg of depth 2k-3. Applying Lemma 2.5
yields a noisy network of over Qg of depth at most 4k-6, and

therefore of size O(3%%). Taking k=[log,(n+1)1 completes the

proof, since 4log,3 < 7. O

33

3. Networks with Logarithmic Redundancy

Our goal in this section is to reprove Theorem A of von
Neumann, Dobrushin and Ortyukov. Our motive for doing this
is to give an explicit construction (von Neumann, Dobrushin

and Ortyukov use a "probabilistic construction").

Theorem 3.1: If a Boolean function is computed by a noiseless
network of size c, then it is also computed by a noisy network

of size O(c log c).

For the proof we shall need a gadget that we shall call a
"compressor", and a lemma giving an explicit construction of
compressors. A bipartite multigraph with m inputs and m
outputs, and k edges incident with each input and output, will
be called an (m, k, a, B)-compressor if it has the following prop-
erty: for every set A containing at most am inputs, the set of

outputs that are connected to at least k/2 inputs in A contains

at most fm outputs.

Lemma 3.2: For every m=p? (p integral), there is an (m, 817,
1/64, 1/512)-compressor. Furthermore, its incidence matrix
can be computed in space O(log m).

Proof: Jimbo and Maruoka [JM] show that for every such m

there is bipartite multigraph with m inputs and m outputs, 8

edges incident with each input and output, and the following
property: its incidence matrix is symmetric, has largest eigenva-
lue 8, and has second largest eigenvalue at most 5v/2. Further-

more, its incidence matrix can be computed in space O(log m).

If we take the 17-th power of this multigraph, we obtain a
multigraph G in which every input and output is incident with
k=817 edges and having the following property: its incidence
matrix M is symmetric, has largest eigenvalue k, and second
largest eigenvalue at most j=(5v2)!7. It remains to show that

G is an (m, 817, 1/64, 1/512)-compressor.

The largest eigenvalue of MTM is k2. The vector e that is 1
in each position is an eigenvector for the this eigenvalue with

(e,e) = m.

Let A be a set of xm inputs with x<1/64. Let B denote
the set of outputs that are connected to at least 817/2 inputs in
A, and let B contain ym outputs. Let f be the vector that is 1
in the positions corresponding to inputs in A and 0 elsewhere.
We have (f, MTMf) < k2(f, e)2/(e, €) + i2(f,) = k2x?m +
j2xm. On the other hand, (vf, MTMf) = (Mf, Mf) > ym(k/2)2,
since (Mf, Mf) is the sum over all outputs of the square of the
number of inputs in A adjacent to that output, and each output

in B contributes at least (k/2)2 to that sum. Combining these
inequalities and dividing by m(k/2)? yields y < 4x2 + 4(j/k)2x.

Since x < 1/64 and (j/k)? = (25/32)!7 < 1/64,y < 1/512. O

Proof of Theorem 3.1: We shall assume that the noiseless net-
work is over a basis containing only 2-argument functions. We
shall construct a noisy network over a basis containing all 3-
argument functions together with an 8!7-argument majority
function (how ties are broken when exactly 817/2 arguments
are 1 is irrelevant). We shall take e=1/512, §=1/128 and show
that the noisy network strongly (e, 8)-computes the same func-

tion as the noiseless one.

The proof follows the lines of that of Dobrushin and Or-
tyukov [DO2]. We shall replace each wire in the noiseless
network by a "cable" of m wires (where m will be chosen later

to be O(log c)), and replace each noiseless gate by a "module"

containing O(m) noisy gates.

The output of the noisy network is computed by a "coda"
that computes, with error probability at most 2e=1/256, the
majority of the m wires in the cable emerging from the module

replacing the gate computing the output of the noiseless net-

34

work. This coda has, by Corollary 2.6, size O(m7) = O((log

¢)7) = O(c log ¢).

A wire v in a cable of the noisy network replacing a wire w
in the noiseless network will be called correct if the interpreta-
tion of the value of v (in the current regime) is the value of w.
We shall adopt a threshold 6=3/512 and say that a cable is

correct if at least (1-6)m of its wires are correct.

It remains for us to show how to construct a module with
the following property: if the cables entering it are correct, then
except with probabilty at most 2(e/4)™m/512, the cable emerging
from it is also correct. We then

may set m =

l'(512log4/e(512c))1/2'|2 = O(log c). It is easy to show by

induction on ¢ that, except with probability at most
c2(e/4)m/512 < 1/256, every cable is correct. It follows that
the noisy network computes the same output as the noiseless

network, except with probability 1/256+1/256=4.

The module that we construct will consist of two parts,

Part A and Part B.

Part A (the "executive organ" in von Neumann’s terminol-
ogy) comprises m noisy gates that compute the same function as
the corresponding gate in the noiseless network. In each of the
two cables entering the module, at most 8m wires are incorrect.
If each of the m gates in Part A fails independently with proba-

bility at most e, then except with probability at most

(e/4)M/512 at most (20+2¢)m = m/64 wires will be incorrect

in the cable emerging from Part A.

It remains for us to show how to construct Part B (the
"restoring organ") with the following property: if the cable
entering Part B has at most m/64 incorrect wires, then except
with probability at most (e/4)™/512, the cable emerging from
Part B will be correct. Let G be an (m, 8!7, 1/64, 1/512)-

compressor, as constructed in Lemma 3.1. Let each input of G

correspond to a wire entering Part B, and let each outpui of G
correspond to a wire emerging from Part B. Consider a net-
work of m noiseless gates, one for each output of G, each com-
puting the majority of the 8!7 inputs to which that output is
connected in G. By the definiﬁg property of an (m, 817, 1/64,
1/512)-compressor, if at most m/64 inputs are incorrect, then
at most m/512 outputs will be incorrect. If we now replace
each noiseless gate by a noisy gate that fails with probability at
most &, then except with probability at most (e/4)™/512, at
most m/512 + 2em = 6m outputs will be incorrect, and thus

the cable emerging from Part B will be correct. [

4. Functions with Bounded Redundancy

In the previous section, we saw that all Boolean functions
have at most "logarithmic redundancy”, in that their complexi-
ties in terms of noiseless and noisy networks differ by at most a
In this section, we shall study present a

logarithmic factor.

variety of functions with "bounded redundancy".

For r>1, let s=2T. Let g.(Xg, ..., Xp.1s Y0 oo ¥s.1) = Yo

where t = Xg + 2%X; + ... + 201x .

Theorem 4.1: For every r and s=2T, g, can be computed by a
network of O(s) noisy gates.

Proof: We shall construct a network over a basis that contains
all 3-argument Boolean functions. We shall take e=1/192 and
8=1/24 and show that the network we construct strongly (e,

§)-computes g,.

Consider a gate that computes the 3-argument function g;.
Clearly, g, can be computed by a noiseless formula containing
2r-1 such gates arranged in a tree. The gates of this formula
are partitioned into levels, with the gates at the leaves in level O
and the gate at the root at level r-2. Suppose that each gate in

level k in the formula were to fail with probability at most

35

4¢(8¢)%. For any setting of the variables xg, ..., X;_1, the cor-

rect operation of the gates on the path from the output to the
variable y, (where t = xg + 2x; + ... + 2"‘1xr_1) ensures the
correct operation of the formula. Such a path contains just one
gate in each level, so the failure probability of the formula
would be at most 4e(1 + 8¢ + (8¢)2 + ...) = 4¢/(1-8¢) < 6e.
Our goal in the remainder of the proof is to bring about a simi-
lar state of affairs using only gates that fail with probability at

most e.

As in the proof of Theorem 3.1, we shall replace wires by
cables and gates by modules, but the number of wires per cable
and the number of gates per module will vary from level to
level. For 1<k<r-2, we shall replace each wire entering a gate
on level k by a cable containing 2k-1 wires and each wire leav-
ing such a gate by a cable containing 2k+1 wires. We shall

regard a cable as being correct if a majority of the wires it

contains are correct.

Each module on level k will contain 2k+1 disjoint noisy
networks, each computing the (2k-1)-argument majority of the
wires in each of the cables entering it and applying the function
g; to the results. Since this can be done by a noisless network
of size O(k), it can be done by a noisy network of size O(k log

k), for a total of O(k2 log k) noisy gates in each module on level

k. Since each noisy network has error probability at most 2e,
the module has error probability at most 22k+1(2¢)k+! =

4¢(8¢)k, as was assumed in the calculation above.

Thus the cable emerging from the module on level r-1 is
incorrect with probability at most 6e. Appending a coda that
computes the majority of the wires in this cable with error
probability at most 2¢ yields a network that is incorrect with
probability at most 6e+2&e=34.

Observing that the number of

gates is O(s) completes the proof. O

Since any noiseless network that computes g, clearly has
f2(27) gates, Theorem 4.1 provides a simple example of a Boole-

an function with bounded redundancy.

For the next theorem we shall need to consider networks
with more than one output. We shall say that such a network
with outputs wy, ..., w,, strongly (e, 8)-computes fy, ..., f, if,
for every 1<j<m, the network obtained by ignoring all but the
output w; strongly (e, 6)-computes f;. Fora>1,letb = 22‘. Let
, Zy.1) denote the b Boolean

ha'o(ZO, eony Za_l), coey ha,b-l(ZO’

function of a Boolean arguments.

a
Theorem 4.2: For every a and b = 22 , ha‘o, ey ha,b-l can be

computed by a network of O(b) noisy gates.
Proof: (Similar to Theorem 4.1.) O

Theorem 4.3: Any Boolean function of n Boolean arguments can
be computed by a network of O(2"/n) noisy gates.

Proof: Take a=Llog,(n-logyn) 1, b = 2.2‘, r=n-a and s=2. Take
e=1/192 and §=1/12. By Theorem 4.2 there is a network M of
O(b) = O(2"/n) noisy gates that strongly (e, §/2)-computes
ha_o(zo, cr Zg_ 1)y wem ha,b-l(ZOv «s Zg.1). By Theorem 4.1 there
is a network N of O(s) = O(2"/n) noisy gates that strongly (e,
8/2)-computes g.(Xg, ..., X1, Y» -0 ¥s.1). It is easy to see that
any Boolean function of the n Boolean arguments xg, ..., X3,
Zg, ...s Z.1 is strongly (e, 8)-computed by a network of O(2/n)
noisy gates that is obtained by connecting each of the inputs y,

s ¥s.1 of N to one of the outputs wy, ..., Wp_y of M in an ap-

propriate fashion. [

Since it is well known (see [M3]) that "almost all" Boolean
functions of n Boolean arguments are computed only by noise-
less networks with 2(27/n) gates, Theorem 4.3 shows that

"almost all" Boolean functions have bounded redundancy.

36

Let us say that a set of m Boolean functions f;(x;, ..., X,),
weer f(Xq, ..y X)) is linear if each of the functions is the sum

modulo 2 of some subset of the n Boolean arguments X1y vens X0

Theorem 4.4: Every set of n linear functions of n Boolean argu-
ments can be computed by a network of O(n2/log n) noisy
gates.

Sketch of proof: Given n prescribed linear functions, we shall
construct a noisy network over a basis that contains all 3-
argument Boolean functions, a certain 11-argument Boolean
function and a 223-argument Boolean function that computes
the sum modulo 2 of its arguments. We shall take e=1/25035,
8=1/2%935 and show that the noisy network we construct
strongly (e, 8)-computes the n prescribed linear functions. The

network will consist of two parts, Part I and Part II.

Partition the arguments into 3n/log,n groups, each con-
taining (1/3)log,n arguments. For each group there are n!/3
distinct linear functions of the arguments in that group. For
each linear function in each group, Part I of the network will
contain 2n!/3 disjoint (and therefore statistically independent)
noisy networks that compute it with error probability at most.
8. There are O(n5/3/log n) such noisy networks, each contain-’
ing O(log n log log n) noisy gates, so Part I has size O(n3/3 log

log n).

Each of the n prescribed linear functions can be computed

as the sum modulo 2 of 3n/log,n linear functions, one from

each group. This can be done by a noiseless network of size
0O(n2/log n). The remainder of the proof (the construction of
Part II) is devoted to showing how this can also be done by a

noisy network of size O(n2/log n).

We shall use low-density parity-check codes, as introduced

by Gallager [G]. Specifically, we shall use a code explicitly

constructed by Margulis [M2]. For m=p3-p (where p is'a
prime), this code has 2m bits, of which m are information bits
and m are redundant bits. Each bit is involved in 3 parity-
checks and each parity-check involves 6 bits. Finally, the code

has k> (log (m/8))/(18 log (1+v2)) independent iterations.

We shall use a scheme for decoding this code due to Taylor
[T1, T2]. This scheme operates on a 3-by-2m array of bits in
which each column contains 3 estimates of the corresponding
bit in a codeword. Each entry in the output array is a function
of 11 entries in the input array. Since we assume the availabili-
ty of an 11-argument gate that computes this function and fails
with probability at most e, if the entries in each row of the
input array are independently incorrect with probability at
most £, then the entries of the output array will be incorrect
with probability at most 35¢2+¢. The errors at the outputs will

not be independent, but since the code has k independent itera-

tions, the decoding process may be iterated k times and the

foregoing inequality will be satisfied each time.

Finally, we may combine 223 3-by-2m arrays of bits to
form another, by letting each entry of the output be the sum
modulo 2 of the corresponding entries of the inputs. Since we
assume the availability of a 223-argument gate computing the
sum modulo 2 and failing with probability at most e, if the
entries of the input arrays are incorrect with probability at
most £, then the entries of the output array will be incorrect

with probability at most 223 +¢.

Part II of the network will consist of n2/3 sections, each
computing m=n1/3 of the prescribed linear functions. Each of
these functions will correspond to an information bit in a code-
word. This codeword is the sum modulo 2 of 3n/log,n other
codewords, one for each group. Each of the information bits in
Each of the

these other codewords was computed in Part I.

redundant bits is a linear combination of the information bits,

37

and therefore was also computed in Part I.

For each section and each group, we shall form a 3-by-2m
array representing the appropriate codeword. The entries in
different columns of each array will be computed by disjoint
networks in Part I and will therefore be independent (this is
why we made 2n!/3 "copies" of each subnetwork in Part I).
The rows in each arr;y need not be independent, and may be
identical. OQur task is to combine, for each section, the
3n/logyn arrays corresponding to different groups into one by
summing their corresponding entries modulo 2. The resulting
array will contain, in any one of its rows and in the m columns

corresponding to information bits, the functions to be computed

by the section.

Part II will consist of a number of stages. Each stage will
contain a combining layer that sums modulo 2 sets of 223 arrays
(thus reducing the number of arrays to be combined by a factor
of 223), followed by a decoding layer. Since 23>18log,(1+v2),
the number of stages needed to combine 3n/log,;n arrays into
one does not exceed the number of independent iterations. If
the inputs to a stage are incorrect with probability at most §,
the outputs ofsthe combining layer (which are the inputs to the
decoding layer) will be incorrect with probability at most
2235+¢ < 2245, Thus the outputs of the stage will be incorrect
with probability at most 35(2246)2+¢ < 8. Thus Part II, which
has n2/3 sections each containing O(n%/3/log n) noisy gates for
a total of O(n2/log n) noisy gates, computes each of the n pre-

scribed linear functions with error probability at most 6. [

Since it is well known that "almost all" sets of n linear
functions of n Boolean arguments are computed only by noise-
less networks with 2(n2/log n) gates (the argument of Muller
[M3] can be adapted to show this), Theorem 4.4 shows that

"almost all" such sets of functions have bounded redundancy.

In contrast with this, Theorem B shows that the individual

functions in such sets all have logarithmic redundancy.

3. References

[A1] R. Ahlswede, "Improvements of Winograd’s Results on
Computation in the Presence of Noise", IEEE Trans. on Info.
Theory, 30 (1984) 872-8717.

[A2] N. Alon, "Eigenvalues and Expanders", preprint.

[DO1] R. L. Dobrushin and 8. I. Ortyukov, "Lower Bound for
the Redundancy of Self-Correcting Arrangements of Unreliable
Functional Elements", Prob. of Info. Transm., 13 (1977) 59-65.

[DO2] R. L. Dobrushin and S. I. Ortyukov, "Upper Bound for
the Redundancy of Self-Correcting Arrangements of Unreliable
Functional Elements", Prob. of Info. Transm., 13 (1977) 203-
218.

[E] P. Elias, "Computation in the Presence of Noise", IBM J.
Res. and Devel., 3 (1958) 346-353.

[G] R.G. Gallager, Low-Density Parity-Check Codes, MIT Press,
1963.

[GG] O. Gabber and Z. Galil, "Explicit Construction of
Linear-Sized Superconcentrators", J. Comp. and Sys. Sci., 22
(1981) 407-420.

[JM] S. Jimbo and A. Maruoka, "Expanders Obtained from
Affine Transformations", STOC, 17 (1985) 88-97.

[M1] G. A. Margulis, "Explicit Constructions of Concentra-
tors", Prob. of Info. Transm., 9 (1973) 325-332.

[M2] G. A. Margulis, "Explicit Constructions of Graphs with-
out Short Cycles and Low Density Codes", Combinatorica, 2
(1982) 71-78.

[M3] D. E. Muller, "Complexity in Electronic Switching Cir-
cuits", IRE Trans. on Electr. Comp., 5 (1956) 15-19,

[N] J. von Neumann, "Probabilistic Logics and the Synthesis
of Reliable Organisms from Unreliable Components", in C. E.
Shannon and J. McCarthy (Eds.), Automata Studies, Princeton
University Press, 1956, pp. 43-98.

[PR] W. W. Peterson and M. O. Rabin, "On Codes for Check-
ing Logical Operations", IBM J. Res. and Devel., 3 (1959) 163-
168.

[T1] M. G. Taylor, "Reliable Information Storage in Memories
Designed from Unreliable Components", Bell Sys. Tech. J., 47
(1968) 2299-2337.

[T2] M. G. Taylor, "Reliable Computation in Computing
Systems Designed from Unreliable Components", Bell Sys. Tech.
J., 47 (1968) 2339-2366.

[W] S. Winograd, "Coding for Logical Operations", IBM J.
Res. and Devel., 6 (1962) 430-436.

38

