Highly Fault-Tolerant Parallel Computation
Extended Abstract*

Daniel A. Spielman'
Department of Mathematics, M.I.T.
Cambridge, MA 02139
spielman@math.mit.edu

Abstract

We re-introduce the coded model of fault-tolerant
computation in which the input and output of a com-
putational device are treated as words in an error-
correcting code. A computational device correctly com-
putes a function in the coded model if its input and out-
put, once decoded, are a valid input and output of the
function. In the coded model, it is reasonable to hope to
simulate all computational devices by devices whose size
is greater by a constant factor but which are exponen-
tially reliable even if each of their components can fail
with some constant probability.

We consider fine-grained parallel computations in
which each processor has a constant probability of pro-
ducing the wrong output at each time step. We show that
any parallel computation that runs for time t on w pro-
cessors can be performed reliablg on a faulty machine in
the coded model using wlogo(1 w processors and time
tlogo(l) w. The failure probability of the computation
will be at most t - exp(—w'/*).

The codes used to communicate with our fault-
tolerant machines are generalized Reed-Solomon codes

and can thus be encoded and decoded in O(n logo(l) n)

sequential time and are independent of the machine they
are used to communicate with.

We also show how coded computation can be used to
self-correct many linear functions in parallel with arbi-
trarily small overhead.

*Errata to this paper will be available at
http://www-math.mit.edu/~spielman.

TSupported in part by an NSF postdoc.

1. Introduction

When the function of a processor is critical, it is com-
mon to use three in place of the one so that even if one
fails, its instructions will be overridden by the other two.
Similarly, one could protect against the failure of k pro-
cessors by following the instructions of a majority of
2k + 1. But, what if these processors are components
of a large parallel machine? Is it necessary to replicate
each processor 2k + 1 times to insure against the loss
of any k7 We show that, in many cases, the answer is
no. At the cost of a polylogarithmic increase in size and
a polylogarithmic slow-down, fine grained parallel ma-
chines can be made to tolerate the failure of a constant
fraction of their processors with a probability of failure
exponentially small in their number of processors. This
should be contrasted with the naive scheme in which the
probability of failure is exponentially small in k.

In 1952, Von Neumann [vN56] introduced the study
of computation by circuits with faulty gates. His
argument (later made rigorous by Dobrushin and
Ortyukov [DO77]) demonstrated that a circuit of m
gates could be reliably simulated by a circuit of
O(mlogm) gates, even if each gate were allowed to fail
with constant probability. He considered circuits with
one output and considered the computation reliable if
the simulating circuit would produce the correct output
with probability some constant close to one.

His result seems optimal: if any gate can fail with
constant probability, then there is a constant proba-
bility that the output gate will fail; similarly, unless
each input is replicated at least a logarithmic number
of times, then there is a constant probability that some
input will be misread (for a rigorous proof of this asser-
tion, see [G4l91, RS91]). However, this argument only
concerns the problem of communicating with the circuit,

not computing with the circuit. Both obstacles disap-
pear if one allows the inputs and outputs of a circuit to
be treated as words in an error-correcting code. If the
input to a circuit is encoded by a good error-correcting
code and if the output is treated as a partially-corrupted
word and then decoded, it seems reasonable to simulate
any circuit by one that is larger by only a constant factor
but which can tolerate with exponentially high proba-
bility the random corruption of a constant fraction of
its gates. We achieve exponentially reliable simulations
whose blow-up is polylogarithmic for a large family of
circuits.

We produce encoding and decoding functions, £ and
D, such that for any parallel machine M with w proces-
sors that runs for time ¢, we can build a fault-tolerant
parallel machine M' with wlogo(l) w processors that
runs for time tlogo(l) w such that

Prob[D(M'(E(x))) = M(z)] > 1—t-27",

even if each processor of M' is allowed to fail indepen-
dently with probability €, for some small € > 0.

If we consider the problem of simulating one circuit
by another, without placing restrictions on the depth of
the simulating circuit, then we can obtain more reliable
computations. For any leveled circuit C with ¢ levels
and at most w gates on any level, we can build a fault-
tolerant circuit C" of size twlog®™ w such that

1—-1/loglogw

Prob[D(C'(E(z))) =C(z)] >1—t-27")

even if each gate of C' is allowed to fail independently
with probability e.

E and D encode and decode the concatenation of
a generalized Reed-Solomon code with a repetition
code, and can thus be computed by circuits of size
O(nlog®n). In addition to having encoded inputs and
outputs, each stage of our computation is a codeword
which is transformed into a codeword representing the
next stage of the computation. Because we use the same
codes for all computations, we guarantee that the com-
putation occurs in the simulating machine rather than in
the encoding or decoding operations. Moreover, we ob-
tain a model of computation in which the output of one
machine can be used as the input of another, without the
interference of any encoder or decoder. Thus, one should
think of the encoded inputs and outputs as merely be-
ing an alternative communication format.! There is no

1 As Taylor [Tay68] points out, uncoded communication should
be considered unusual since almost all data communication re-
quires the use of error-correcting codes of some type.

need to decode the communications until one needs to
transform the encoded information into an unencodable
action.

In his original paper, von Neumann [vN56] suggested
that coding theory should somehow be applied to con-
structing fault-tolerant circuits. Elias [Eli58] introduced
a notion of coding for fault-tolerant parallel computa-
tion that would allow one to compute many instances
of one linear function in the presense of noise. How-
ever, his model was overly restrictive, allowing one to
prove negative results for general computation [Eli58,
Win62, Ahl84]. In Section 8, we present an application
of Elias’s ideas to self-correcting linear functions (as de-
fined in [BLR90]). The model that we present here was
essentially introduced by Taylor [Tay68]. Taylor used
Gallager’s low density parity check codes to construct
memories that were stable even in the presense of faults.
He then demonstrated that any linear function could be
computed with high reliability with gates that fail with
constant probability (his results for general computa-
tion were in error—see [Pip90]). For a more complete
survey of work on fault-tolerant computation, we direct
the reader to [Pip90].

The techniques that we use in our construction are
derived from those used to construct small probabilisti-
cally checkable proofs in [BFL91, BFLS91, Sud92, BF93,
PS94]. Other advances in the development of probabilis-
tically checkable proofs geared at decreasing the number
of bits read or random bits used do not seem to help us in
our construction. Gal and Szegedy [GS95] make an in-
teresting connection between probabilistically checkable
proofs and fault-tolerant circuits that is very different
from the one we make here—in their constructions, all
the computation occurs in the encoding and the work of
the fault-tolerant circuit is devoted to obtaining a 0/1
output.

In Section 3, we define our coded model of compu-
tation. We review von Neumann’s construction in Sec-
tion 4. In Section 5, we describe the polynomial codes
that we will use to encode the inputs, outputs, and each
stage of our computations. In Section 6, we show how
fault-tolerant computations can be performed on poly-
nomial codes. In Section 7, we define our model of paral-
lel computation, describe how general parallel computa-
tions can be encoded by polynomial codes, and describe
our constructions. In Section 8, we provide a simple ex-
ample of how ideas of coded computation can be used to
make the computation of linear functions more reliable
by demonstrating that self-correction of linear functions
can be performed in parallel with very little overhead.
We conclude with a discussion of how our work might

be extended.

2. Notation

If S and T are sets, we write ST to denote the set
of |T|-tuples of elements of S indexed by elements of T
(i.e., the set of functions from T to S). For d an integer,
S denotes the set of d-tuples of elements of S.

The parameters of a circuit that we measure are its
height and its width. These are defined by assigning a
level to each gate in a circuit as follows: the inputs to
the circuit lie on level zero, and the level of a gate is one
greater than the maximum of the levels of its inputs.
The height of the circuit is the maximum level of any
gate. The width is the maximum over ¢ of the number
of wires that go from gates on level 7 or less to gates
on level i + 1 or more. Essentially, width measures how
much space is required to evaluate a circuit. Note that
the width of a circuit is always at least its number of
inputs.

3. Coded Computation

In this section, we define a coded model of fault-
tolerant computation. We begin with a definition that
captures the notion of coding.

Definition 1. A pair of functions E, D are an encoding-
decoding pair if there exists a function [such that E :
{0,1}" = {0,1}™ and D : {0,1}'™ - {0,1}" U {7}
such that D(E(@)) = @ for all @ € {0,1}".

Of course, one can make similar definitions with larger
alphabets. While it is not explicit in this definition,
we will usually require that £ and D be encoding and
decoding functions for an error-correcting code.

Definition 2. Let E, D be an encoding-decoding pair.
A parallel machine M’ (¢, 0, E, D)-simulates a machine
M if

Prob[D(M'(E(a@))) = M(@)] >1—-4§

for all inputs @, even if each processor of M' has some
probability less than € of producing the wrong output
at each time step. Similarly, a circuit C' (e,0, E, D)-
simulates a circuit C' if

Prob[D(C'(E(@))) = C(@)] >1—6

for all inputs @, even if each wire of C' has some prob-
ability less than e of producing the wrong output. The
blow-up of the simulation is the number of gates in C’
divided by the number of gates in C.

Remark 3. When we say that each wire or processor
has some probability less than € of failing, we mean that
the failures are consistent with Pippenger’s e-admissible
failure model [Pip89]. Essentially, Pippenger’s model
assumes that, when it comes time for a signal to traverse
a wire, there is a function that that takes the state of ev-
ery previously computed wire in the circuit as input and
outputs a number € between 0 and €. The value of the
wire is then flipped with probability €'. If the value of the
wire is flipped, then we say that the wire has failed. For
simplicity, the reader might want to consider the weaker
model in which each wire is assigned some probability
less than € of failing, independent of the computation
being performed.

Remark 4. When a processor fails, we will assume that
its output can be arbitrarily bad. We can make this as-
sumption because the processors that appear in our con-
structions will only output one bit at a time.

For an encoded computation to be meaningful, we
need to be sure that the computation actually occurs in
the machine M’ rather than in the encoding or decoding
operations. One way to guarantee this is to require that
the encoding and decoding functions be computed by
circuits smaller than any known circuit computing the
same function as M. This condition is usually satisfied
by our construction because our encoding and decoding
functions can be computed in time nlogo(l) n.

Our encoding and decoding functions satisfy a much
stronger condition: we use the same encoding and de-
coding functions in all simulations. That is, the encod-
ing and decoding only depend on the number of pro-
cessors in the machine to be simulated. Such a system
has the advantage that it allows for a consistent system
of computation: the output of one of our fault-tolerant
machines can be used as the input to another without
any encoding or decoding needed to make the transi-
tion. Thus, we can consider a world in which the input
and output of every computational device is encoded by
an error-correcting code. Communications only need be
decoded when they are to be realized as action rather
than computation.

On the other hand, one could reasonably discuss
coded fault-tolerant computation in which the encod-
ing and decoding function do depend on the device
simulated and even encode and decode different error-
correcting codes, so long as the encoding and decoding
circuits are smaller than the device to be simulated.

4. Local Coding

Von Neumann constructed fault-tolerant versions of
ordinary circuits by adjusting the circuits locally. He
replaced each wire in a circuit with a bundle of r wires.
During fault-free computation each wire in a bundle
would carry the same value. During fault-tolerant com-
putation, the value of a wire is represented by the ma-
jority of the wires in its corresponding bundle. This
majority was arranged to be strict, so that a 1 — € frac-
tion of the wires in a bundle should all carry the same
value, for some small e. Where two wires in the original
circuit would meet at a gate, two bundles of wires in
the fault-tolerant circuit meet at a collection of gates,
each of which would act on one wire from each bundle.
If a 1 — € fraction of the wires in each incoming bun-
dle all carried the same value, then at least a 1 — 2¢
fraction of the wires in the outgoing bundle would carry
the same value. To boost this majority back to 1 — ¢,
von Neumann fed such a bundle into an emplifier that
would boost the agreement of the wires to at least a
1 — e fraction. This amplifier could be constructed from
O(r) gates and wires. Dobrushin and Ortyukov [DO77]
proved that, even if each wire is allowed to fail with
some small constant probability, the probability that
any bundle would fail to represent its intended fault-
free value is 279("). The fault-tolerant circuit was then
capped with a device that would reliably compute one
wire representing the value of the output bundle. Thus,
a circuit of w wires could be made fault-tolerant at a
cost of O(logw) blow-up.

The constructions of [vN56, DO77] were probabilistic.
Using explicit constructions of expander graphs, Pip-
penger [Pip85] made these constructions explicit. We
summarize Pippenger’s theorem for later use:

Theorem 5. There is a constant ep > 0 such that, for
all circuits C, there is a means for replacing each wire
in C with a bundle of O(r) wires and an amplifier con-
sisting of a circuit of size O(r) so that the probability
that any bundle in the circuit fails to represent its in-
tended value is at most w2~". The blow-up of such a
simulation is O(r).

One can view this scheme as encoding its inputs with
a repetition code—one in which each symbol is repeated
many times.

This scheme can be directly applied to fine-grained
parallel computations: Each constant-bit processor can
be replaced by a circuit of constant size. We can then
apply the theorem, obtain a new circuit, and now view
each gate in the new circuit as a (very) small processor.

5. Polynomial Coding

In this section, we define the generalized Reed-
Solomon codes that we will compose with repetition
codes to encode the inputs and outputs of our compu-
tations. The state of each stage of our computations
will also be encoded by such a code. We point out that
these codes can be encoded and decoded efficiently and
develop the terminology that we will use to discuss these
codes.

Definition 6. Let F be a field and let H C F. We
define the code (', 7 by defining its encoding function.
The encoding function

E'H’]:Z.}JH—)]:]:

acts by treating its input as an F-valued function on
‘H, finding the unique degree (|| — 1) polynomial that
interpolates this function, and writing the values of this
polynomial at every point of . The code Cy, # is the
image of 7 under Ey; 7. The decoding function

D'H,]:]:]:—)]:’HU{?}

takes a word @ = (a1, ...,az|) as input. If there is a
codeword b of Cy, 7 that differs from @ in fewer than
(|F| = |H])/2 places, then Dy, 7 outputs E;L,lf(b); oth-
erwise, it outputs “?”.

The code Cy, 7 is usually called an extended Reed-
Solomon code (see [MST7, vL92]). To make sense of the
definition of the decoding function, one needs to observe
that distinct codewords differ in at least |F|—|H| places,
so there is no ambiguity as to the correct output of the
decoding function.

Theorem 7 (Justesen, Sarwate). The encoding and
decoding functions Ey 5 and Dy 7 can be computed by
circuits of size | F|log®™ | F|.

Proof: The encoding function is just polyno-
mial interpolation, for which efficient circuits are pre-
sented in [AHU74] and [J4J92]. Justesen [Jus76]
and Sarwate [Sar77] demonstrate that efficient algo-
rithms for computing the Half-GCD of two polynomi-
als can be used to decode Reed-Solomon and Goppa
codes. They relied on [AHU74] for their computation
of the Half-GCD in time O(nlog”n). While the proof
in [AHU74] was faulty, it has been corrected (see [Str83]
and [BCS96, Chapter 3, Sections 1 and 2]). m|

A close relative of the decoding function is the error-
correction function. Where the decoding function out-
puts a vector in Ft, an error-correction function out-
puts a codeword close to the input word. That is, the
error-correction function

Dy s FF = FFu{?}

maps its input to a codeword of C'y, # that differs in at
most k places, if such a codeword exists. If no such code-
word exists, the function outputs “?”. The parameter k
is included in this definition because the complexity of
computing the error-correction function depends on k.
In particular, for k = O(/|F]), there is a randomized
algorithm of Kaltofen and Pan [KP94] from which we
can build a circuit that computes D%’ + and which has
polylogarithmic depth and almost linear size.

Theorem 8 (Kaltofen-Pan). There is o randomized
parallel algorithm that will solve a k x k Toeplitz sys-
tem over any finite field with probability 1 — 1/k in time
logo(l) k using k2 logo(l) k processors.

Lemma 9. The function D%’}- can be computed by a

randomized parallel algorithm that takes time log®V | F|
on (K2 + |F|)1og®M | F| processors, for k < (|F| —
|H|)/2. The algorithm succeeds with probability 1—1/q.

Proof: Standard techniques for decoding Reed-
Solomon codes (see [MS77, Chapter 8]), compute D}, »
by solving a k x k Toeplitz system, multiplying two poly-
nomials over F modulo (z'7! — z), and dividing two
polynomials over F. Using efficient algorithms for the
Finite Fourier Transform, the multiplication and the di-
vision can be performed with |F|log®™®) | F| processors
in log®® | F| time [J4J92]. To solve the Toeplitz sys-
tem, we use the randomized algorithm of Theorem 8
that uses at most k2log®" | F| processors and takes
time log®® | 7. O

Our construction will use bivariate analogues of the
codes Cyy, r.

Definition 10. Let F be a field and let H C F. The
code Cy2 r is defined by its encoding function

E'HQ’]: :f,HQ —>.7:]:2
which treats its input as an F-valued function on H2,

finds the unique bivariate polynomial of degree at most
(|H]|—1) in each variable that interpolates this function,

and outputs the values of this polynomial at every point
of F2. The decoding function

D'Hz’]::ff2 —)fH2U{?}

takes a word @ € F* as input. If there is a code-

-

word b of Cy> 7 that differs from @ in fewer than
((lF| — H])/2)? places, then Dy z outputs Ey} .(b);
otherwise, it outputs “7”.

The code Cy2 r is a generalized Reed-Solomon code
(see [MS77, vL92]). These codes inspire the definition
of the mazimum degree of a multivariate polynomial to
be the maximum of its degrees in each variable.

We now describe standard algorithms for encoding
and error-correcting the bivariate polynomial codes:

Bivariate encoding algorithm:
input: a word (az,y)(z,y)en?

e For each yo € H, compute

(bz,yo)zeF = B, 7 ((Az,y0)zen)
e For each z9 € F, compute

(czo,y)yeF = B, 7((bzo,y)yen)
e Output (Cz,y)(z,y)cr?-

Bivariate error-correcting algorithm:
input: a word (az,y)(s,y)cr> and a parameter k

e For each yo € F, compute
(bz,yo)zeF = D?—t,]—'((aw,yo)xef)
e For each zy € F, compute

(Czo,y)yef = D%,f((bm,y)ye]’)

e Output (cz,y)(2,y)cr>-

We say that a word (az,y)(z,y)cr2 represents a poly-
nomial p(Z) if the word is the evaluation of p(Z) at
each point of F2. That is, if a;, = p(z,y) for all
(z,y) € F2 If (as,y)(s,y)er2 is a word that differs
from the representation of a maximum-degree d poly-
nomial p(z,y) in at most an e fraction of its entries
and e < ((|F| — |H| = 1)/2|F]|)?, then p(z, y) is the only
maximum-degree d polynomial whose representation is
this close t0 (az,y)(z,y)eF2, 50 We say that (az,y)(s,y)er?
e-represents p(z,y).

We also define a more restrictive notion: a word
(@z,y)(z,y)cF? €-column represents a polynomial p(z,y)
if a,,, agrees with p(x,y) in all but an e fraction of the
values of z.

6. Computation with polynomials

The fundamental operation of our fault-tolerant cir-
cuits will be to take representations of two maximum-
degree |H| — 1 polynomials, A and B, that correspond
to states of a computation and an operation polynomial
#(a,b) and produce a representation of the maximum-
degree |H| —1 polynomial C that interpolates the values
of ¢(A(z,y), B(w,y)) for (z,y) € H*.

We begin by observing that if @ and b represent A and
B, and if ¢ has degree c, then (¢(a(z, y),b(2,Y))) (z.y)en?
represents the maximum-degree ¢(|H| — 1) polynomial
#(A,B). Moreover, if @ and b erepresent A and
B, then (¢(a(z,y),b(2,y)))(z.y)en> 26-represents the
maximum-degree ¢(|H| — 1) polynomial ¢(A, B). How-
ever, we want the word that represents the maximum
degree |H| — 1 polynomial that interpolates ¢(A,B)
through (z,y) € H2?. To obtain such a word from
(#(a(z,y),b(x,¥)))(z,y)erz, We use a process called de-
gree reduction. We first explain degree reduction in one
variable. (note that degree reduction is only reasonable
if e(|H|—1) < |F| (1 —2¢), but we will be sure that this
always holds whenever we apply degree reduction.)

Univariate degree reduction takes a [(-representation
of a degree d > |H| polynomial P and produces the
unique polynomial @ of degree at most |H| — 1 that
agrees with P on H,

To state formally the univariate degree reduction
function, we define the function 7y that takes a tuple
of values indexed by a subset of F and projects onto
those values indexed by elements of H, 7y : (ag)eecr —
(az)zew- Now, we can write the univariate degree re-
duction function R}, » as a composition

Rk 4 7((ag)zer) = B, 7 (mu(D§ 7 ((az)aer))),

where G is any subset of F of size d—1 such that H C G.
(The reader might want to verify that this function is
independent of the choice of G.)

Bivariate degree reduction is analogous to univariate
degree reduction in the same way that bivariate encod-
ing and error-correction are analogous to univariate en-
coding and error-correction.

The idea of degree reduction appeared in Sudan’s the-
sis [Sud92]. It’s applicability to constructing small prob-
abilistically checkable proofs was pointed out in [BF93].

Our application follows from the simple observation that
their proofs can be constructed deterministically, rather
than being checked non-deterministically.

Lemma 11 (one computation step). Let (az,y)(z,y)cn2
and (bzy) (z,y)en> B-column represent mazimum degree
(|1%| — 1) polynomials A and B, respectively. Let ¢ be

a degree c bivariate polynomial. Define ¢z, c;’y, and
¢, by the program:

1 For each (z,y) € F2, compute ¢z y = ¢(az,y,bz.y)

2 For each yo € F, compute

(Ci,yo)zef = Rs,’H,]-'((cz,yO)zE}')
3 For each xo € F, compute

(Cio,y)yef = RS,H,}‘((C;O,y)yE]:)

4 Output (c§7y)(z,y)6]:2‘

Even if an € fraction of the degree-reduction operations
fail during each stage, (ci’y)(z’y)e 2 will B-column rep-
resent the mazimum degree |H| — 1 polynomial that in-
terpolates the values of ¢(A, B) through H?, provided
that
k > max {20, €} | F| and c|H| < (1—€)|F]

Proof: First note that (cz,y) . yer> (26)-column rep-
resents the polynomial ¢(4, B). Because k > 23 |F|,
(¢ o)ocr will differ from Ry, 5(6(A(z,90), B(@,0))ac)
only if yo is one of the at most €|F| whose degree-
reduction may fail. Because k > €|F|, (¢) (a,y)c7>
will differ from the maximum degree |#|— 1 polynomial
interpolating the values of ¢(4, B) at (z,y) € F? only
in those columns whose degree-reduction operation fails.

O

We will write Rg’Hg’ + to denote the operation per-
formed in stages 2 and 3 of the above computation.

7. Arithmetization of computation

To facilitate our arithmetization of computation, we
will choose one type of computation to arithmetize and
then observe that it can efficiently simulate any other
computation of similar width. We will use algorithms
that can be implemented on a hypercube in which each
processor has a memory of a constant number of bits
and, in each time step, each communication occurs in
the same dimension.

In the n-dimensional hypercube, each processor is la-
beled by a string in {0,1}" and each processor is con-
nected to those whose labels differ in just one dimension.
Each processor is an identical finite automaton, inde-
pendent of the size of the hypercube. The input to such
a machine is a setting of the initial state of each proces-
sor. A program for such a machine is a list containing a
communication direction in each time step, as well as an
instruction for each processor at each time step. Dur-
ing a computation step, each processor updates its state
according to its current state, its incoming instruction,
and the state of its neighbor in the communication di-
rection for that time step. Note that we insist that each
processor communicate in the same direction in each
time step, so that if processor (0,0,0) communicates
with processor (1,0,0), then processor (1,0,1) can only
communicate with processor (0,0,1). However, we al-
low a program to contain different instructions for dis-
tinct processors during the same time step. For more
information on such models and proof of the following
proposition, see [Lei92].

Proposition 12. Any parallel machine with w proces-
sors can be simulated with polylogarithmic slowdown by
a hypercube with O(w) processors.

To arithmetize hypercube computations, we choose
F to be a field of the form GF(2"). Each element
of GF(2¥) can be naturally represented as a vector in
GF(2). We let v1,...,v, be the standard basis ele-
ments and let A be the space spanned by {v1,...,vn},
where m = n/2 (assume v > m). We can now naturally
identify each processor in the {0,1}" hypercube with an
element of H2.

Since each processor is a finite automaton, we can
identify the set of states of a processor with a finite set
of the form S = GF(2°), for some constant s. Hereafter,
we insist that S C F, so that the state of the hypercube
can be viewed as a word over § C F indexed by el-
ements of H?, say O(z,y)- As the reader may have by
now guessed, this state will be stored in a fault-tolerant
form as Ey2 7((02,y)(a,y)enz)- Similarly, the list of in-
structions for each processor at a given time step can
be viewed as a word over S indexed by elements of H2,
and can be encoded similarly.

To arithmetize the communication of processors with
their neighbors, we observe that for each communication
direction there is a vector in H?2 so that the label of the
neighbor of a processor in that direction can be obtained
by adding the vector to the label of that processor. For
example, to swap states of processors in the first dimen-
sion, one need merely add (v;,0) to the name of each

processor. Moreover, if 7 € H2, and
(az)zer2 = Bnz 7((0z)zer2), then

(azi0)zer: = Bz 7((07+7)zer2)-

We can now arithmetize hypercube computations.
This arithmetization is derived from the development
in [PS94, Spi95] of ideas from [BFLS91]. While it may
appear to be a minor consideration, the fact that the
encoding of the permuted states can be obtained by per-
muting values in F \ H is special to very few arithme-
tizations. One can use techniques from these papers to
similarly arithmetize computations on shuffle-exchange
and de Bruijn graphs.

Lemma 13. There exist bivariate polynomials ¢1 and
@2 of constant degree ¢ such that for any parallel hyper-
cube program that runs in time t on a 2m-dimensional
hypercube, there exists a sequence of communication di-
rection vectors w0y, ..., w; in H2 and a sequence of in-
struction words W', ..., W' in Cy2 » such that for ev-
ery input (01,...,092m) € S** to the hypercube pro-
gram, the output of the hypercube program is the same
as the output of:

o Let (a%)feyﬂ = Ey2 p(01,...,00m).

e Fori=1tot,

(bi)zer» = RY

T e(|H|—1),H2,F (d)l (a;‘_17 afz':_%i)i‘e]—'?))
) V17| .)
(a%)iejﬂ = Rc(\’i—thl),’{-ﬂ,]—' (¢2 (b%aW%)fe]:Q) .
o Output Dy2 5 (ab)zer2).

Proof: Since the states that a processor can have as
well as its set of instructions are identified with elements
of a finite field S, there are polynomials ¢; and ¢, over S
such that, if o is the state of a processor, ¢’ is the state of
its neighbor in the communication direction, and 7 is the
instruction for that processor, then ¢2(¢1(o,0'),n) will
be the state of the processor after receiving instruction
1 and communicating with its neighbor.

Thus, the function of the above program is to produce
a codeword that encodes the state of each processor in
the hypercube algorithm at each time step. If one ig-
nores the values of the codewords at points other than
those corresponding to processors (i.e., other than those
in H?), then this becomes obvious. The superscript on
R is irrelevant because we assume there are no errors in
the above computation. O

By combining Lemmas 11 and 13 with Theorem 5,
we obtain our main theorem

Theorem 14. There exists a constant ep > 0 and a de-
terministic construction that provides, for every parallel
program M with w processors that runs for time t, a ran-
domized parallel program M' that (ep, h - 2*“’1/4,E,D)—
simulates M and runs for time tlogo(l) w onw logo(l) w
processors, where E encodes the O(log2 w)-fold rep-
etition of a generalized Reed-Solomon code of length
w logo(l) w and D can correct any w=>3/* fraction of er-
ror in this code.

Proof: By Proposition 12, M can be simulated by a
n-dimensional hypercube algorithm with polylogarith-
mic slowdown, provided that 2" > w. We choose F to
be the smallest field GF(2") such that S C GF(2¥) and
2V > ¢2"/?+2 By Lemma 13 and Lemma 9, there is an
arithmetic program that computes the same function as
M that can be computed by a parallel machine with
wlogo(l)w processors that runs for time tlogo(l)w.
By Lemma 11, if the input to the program 1/ \/W—
column represents Ey»2 z(01,...,092m), and if at most
a 1/4/]F] fraction of the univariate degree reduction op-
erations fail during each of the ¢ stages, then the output
of each stage will 1/ \/W—column represent the output
that would have appeared in the absence of faults.

As each univariate de§ree reduction operation is per-
formed by O(y/|F]log? D |F|) processors that run for
log®M) | F| time, and the other operations all require
many fewer processors, the machine can tolerate the
failure of up to w'/4/ (1og®M w) processors at each time
step.

We now apply Theorem 5 to this circuit, replacing
each processor by a collection of r processors and in-
serting amplifiers. Applying a Chernoff bound, we see
that we can choose r = O(log” w) so that the probabil-
ity that more than w'/4/2X1°6” ®) collections of proces-
sors fail during any stage is at most 2—w'/* Thus, our
encoding-decoding pair works with the r-fold repetition
of C'y2, 7 and the probability that the simulation fails is

at most h-2-w"", O

When we construct a parallel machine with w pro-
cessors that runs for time ¢, we are really thinking of a
circuit of width w and depth ¢. If we just concern our-
selves with the size of the simulating circuit and ignore
its depth, then we can get much lower error probabili-
ties. Instead of Lemma 9, we can use Theorem 7 to per-
form univariate error-correction. As the later decoder
is much better, each univariate operation can tolerate a
constant fraction of error in its inputs. This enables us
to arithmetize the computation in loglogw dimensions
and prove the following theorem:

Theorem 15. There exists a constant ep > 0 and a
deterministic construction that provides, for every cir-
cuit C of width w and height t, a circuit C' of size
twlog®M w that (ep, poqu'THIElE B D)-simulates C,
where E and D encode and decode the O(log® w)-fold
repetition of generalized Reed-Solomon codes of length
wlogo(l) w.

8. Application to Self-Correcting Pro-
grams

So far, the results we have presented have dealt with
faults in individual wires. It is interesting to investigate
whether similar techniques can be applied to protect
against faults of larger modules within a system. We
now present a simple example of how some of the ideas
used in this paper can be combined with techniques for
self-correcting linear functions to obtain a result of this
form.

Blum, Luby, and Rubinfeld [BLR90] introduced self-
testing/correcting programs to enable the reliable com-
putation of a function with a device that usually com-
putes the function, but is occasionally wrong. One
drawback of the Blum-Luby-Rubinfeld self-correcting
procedures is that they require multiple calls to the de-
vice for each reliable computation of the function. We
observe that if one wants to compute many instances of
a linear function with an unreliable device, then one can
reliably compute all these instances of the function while
making very few extra calls to the device (see [Rub92]
for an application of related ideas to program checking).

We begin with a modification of an idea of Elias [Eli58].
Let (E,D) be an encoding-decoding pair for a linear
error-correcting code of rate r such that D can correct
a ¢ fraction of error. That is, there is an alphabet F' such
that £ : F™™ — F™ is a linear function and if w € F™
is a word that differs from a word E(z) in at most a §
fraction of its entries, then D(w) = x.

Now, let M be a linear function, let z1,...,2,, be
instances on which we would like to compute M, and
let P be an occasionally faulty device that usually com-
putes M. To use P to compute M(z1),..., M(z.m),
we begin by computing (y1,---,Yn) = E(x1,...,Trp)
and applying P to each of yi,...,y,. Because M
and E are linear functions, E(M (z1),..., M (zm)) =
(M(y1),-..,M(yn)). Thus, if P produces the cor-
rect output on at least n — dn of the y;’s, then
D(P(y1),s - - yn) = (M (1), ., M(wpn):

For self-correction in the sense of [BLR90], it is nec-
essary to make the instances yi,...,y, randomly dis-

tributed. This can be done by computing M on a few
less instances and adding a few randomly chosen code-
words to the vector yi,...,yn.

For example, if we have a program P that computes
a linear function M on all but an € fraction of its inputs,
we can use polynomial codes to compute m instances of
M while making only m + 3k + 1 queries to P with a
probability of error at most €® (" 3¥+1). Let F have size
m+3k+1. The m instances, (a1, .., an), will be identi-
fied with, A, a subset of F of size m. We will then choose
an additional k problem instances by, ..., b; uniformly
at random. These will be identified with a set B C F of
size k. Note that the elements of ¥ = Ep (b1, ..., bg)
are a set of m+ 3k + 1 k-wise independent random vari-
ables.

Now, let § = Eaup,r(a1,-..,am,0,...,0), by which
we mean to interpolate the degree |A| + |B| — 1 polyno-
mial that has values (ay,...,a,) at A and is zero at B.
Because 7 is a representation of a degree |B| — 1 poly-
nomial, ¢+ 7 is a codeword of C4up,r, and the result
of applying M to each element of ¢+ 7 will be as well.
We now apply P to each element of §+ 7. If P returns
the wrong answer on fewer than k instances, then the
decoding algorithm applied to P’s answers will return
the correct evaluation of M at each element of §+ 7. To
obtain the values of M at aq,...,an, it only remains to
subtract off the vector Ep #(M (b1),. .., M(by)).

Since the elements of ¢+ 7 are k-wise independent,
the probability that P returns the incorrect answer on
more than k instances is at most e ("3).

9. Directions for further work

Greater fault tolerance: If there were a processor-
efficient polylog depth circuit for decoding Reed-Solomon
codes, then it would be possible for parallel machines to
achieve the fault tolerance achieved by circuits in The-
orem 15. Even if one can achieve this, it would remain
open whether one can construct parallel machines with
w processors that fail with probability only 2-%/ log® w
or even 2~%(®) A machine with the latter error proba-
bility would necessarily be resistant to a constant frac-
tion of faults chosen by an adversary.

Constant blow-up: Taylor [Tay68] used Gal-
lager’s low-density parity check codes to construct fault-
tolerant memories. His construction was improved by
Kuznetsov [Kuz73] to obtain stable memories that store
n bits using O(n) wires and tolerate a constant rate of
error with probability 2~ 4™ . Kuznetsov’s construction
was probabilistic, but can be made deterministic using
techniques from [SS96]. Thus, a natural way to try to

construct fault-tolerant circuits with constant blow up
would be to find a way to modify these codes so that
they allow computation.

Connection patterns of fault-tolerant circuits:
The fault-tolerant circuits that we construct cannot be
embedded well in the three dimensional space we oc-
cupy. This is in contrast with the results of Gécs [G&c86]
that enable fault-tolerant computation with cellular au-
tomata. We wonder whether connectivity patterns as
complex as ours are necessary to obtain our high degree
of fault-tolerance.

Using algebraic geometry codes: Using alge-
braic geometry, one can construct asymptotically-good
error-correcting codes that have the same multiplica-
tive property as Reed-Solomon codes: if one performs
component-wise multiplication on codewords of low
rate, then one obtains a codeword in a larger error-
correcting code. One can use such codes in place of
Reed-Solomon codes in our constructions. One should
also be able to use them in constructions of probabilis-
tically checkable proofs in place of the polynomial codes
currently used. The advantage of this is that the alpha-
bet size of algebraic geometry codes is constant, while
it must grow for polynomial codes.

Fault-tolerant simulation of all circuits: We ask
whether all circuits have an efficient fault-tolerant sim-
ulation. We conjecture that the answer to this question
is “no”. We suspect that there are circuits whose width
times height is much greater than their size and which
cannot be made fault-tolerant efficiently in our model.
However, we would prefer to be surprised.

Quantum Computation: Can ideas from this pa-
per used to compensate for decoherence in quantum
computations?

Other applications: We have shown that parallel
computation can assume a rather unusual form. Such
computations may very well have other applications.
We are optimistic because fault-tolerance can be used
as a metaphor for many other computational concepts.

10. Acknowledgements

I would like to thank Amin Shokrollahi for helpful
discussions of error-correcting codes and Manuel Blum,
Torsten Suel, and Umesh Vazirani for other inspiring
conversations.

References

[AhI84] R. Ahlswede. Improvements of Winograd’s results

on computation in the presense of noise. IEEE Transactions
on Information Theory, 30:872-877, 1984.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.
The design and analysis of computer algorithms. Addison-
Wesley series in computer science and information process-
ing. Addison-Wesley, Reading, Massachusetts, 1974.

[BCS96] P. Biirgisser, M. Clausen, and M. Shokrollahi. Al-
gebraic Complezity Theory. Springer Verlag, 1996. to appear.

[BF93] L. Babai and K. Friedl. On slightly superlinear trans-
parent proofs. CS 93-13, The University of Chicago, Depart-
ment of Computer Science, Chicago, IL, 1993.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Nondetermin-
istic exponential time has two-prover interactive protocols.
Computational Complerity, 1:3-40, 1991.

[BFLS91] L. Babai, L. Fortnow, L. Levin, and M. Szegedy.
Checking computations in polylogarithmic time. In Proc. of
the 23rd ACM STOC, pages 21-31, 1991.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-
testing/correcting with applications to numerical problems.
In Proc. of the 22nd ACM STOC, pages 73-83, 1990.

[DOT77] R. L. Dobrushin and S. I. Ortyukov. Upper bound
for the redundancy of self-correcting arrangements of unre-
liable functional elements. Problems Inform. Transmission,
13:203-218, 1977.

[Eli58] P. Elias. Computation in the presense of noise. JBM
J. Res. Develop., 2:346-353, 1958.

[G4c86] P. Gacs. Reliable computation with cellular au-
tomata. J. Comput. Syst. Sci., 32(1):15-78, February 1986.

[G4l91] A. Gél. Lower bounds for the complexity of reliable
Boolean circuits with noisy gates. In Proc. of the 32nd IEEE
FOCS, pages 594-601, 1991.

[GS95] A. G4l and M. Szegedy. Fault tolerant circuits and
probabilistically checkable proofs. In Proceedings of the 10th
IEEE Structure in Complezity Theory Conference, pages 65—
73, 1995.

[J4J92] J. JAJ4. An introduction to parallel algorithms. Ad-
dison Wesley, 1992.

[Jus76] J. Justesen. On the complexity of decoding Reed-
Solomon codes. IEEE Transactions on Information Theory,
22(2):237-238, March 1976.

[KP94] E. Kaltofen and V. Pan. Parallel solution of toeplitz
and toeplitz-like linear systems over fields of small positive
characteristic. In Proc. 1st Internat. Symp. Parallel Symbolic
Comput., pages 225-233. World Scientific Publ. Co., 1994.

[Kuz73] A. V. Kuznetsov. Information storage in a memory
assembled from unreliable components. Problems of Infor-
mation Transmission, 9(3):254-264, 1973.

[Lei92] F. T. Leighton. Introduction to Parallel Algorithms
and Archictectures. Morgan Kaufmann Publishers, Inc., San
Mateo, CA, 1992.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The The-
ory of Error-Correcting Codes. North Holland, Amsterdam,
1977.

[Pip85] N. Pippenger. On networks of noisy gates. In Pro-
ceedings of the 26th Ann. IEEE Symposium on Foundations
of Computer Science (Portland, OR), pages 30-38. IEEE,
IEEE, 1985.

[Pip89] N. Pippenger. Invariance of complexity measures for
networks with unreliable gates. J. ACM, 36(3):531-539, July
1989.

[Pip90] N. Pippenger. Developments in “the synthesis of
reliable organisms from unreliable components”. In Proceed-
ings of Symposia in Pure Mathematics, volume 50, pages
311-324, 1990.

[PS94] A. Polishchuk and D. A. Spielman. Nearly linear-size
holographic proofs. In Proc. of the 26th ACM STOC, pages
194-203, 1994.

[RS91] R. Reischuk and B. Schmeltz. Reliable computation
with noisy circuits and decision trees—a general n log n lower
bound. In Proc. of the 82nd IEEE FOCS, pages 602—611,
1991.

[Rub92] R. Rubinfeld. Batch checking with applications to
linear functions. Information Processing Letters, 42:77-80,
May 1992.

[Sar77] D. V. Sarwate. On the complexity of decoding
Goppa codes. IEEE Transactions on Information Theory,
23(4):515-516, July 1977.

[Spi95] D. A. Spiel-
man. Computationally efficient error-correcting codes and
holographic proofs. PhD thesis, M.I.T., May 1995. Available
at http://theory.lcs.mit.edu/~spielman.

[SS96] M. Sipser and D. A. Spielman. Expander codes. IEEE
Transactions on Information Theory, 1996. to appear.

[Str83] V. Strassen. The computational complexity of con-
tinued fractions. SIAM J. Comput., 12(1):1-27, February
1983.

[Sud92] M. Sudan. Efficient checking of polynomials and
proofs and the hardness of approzimation problems. PhD
thesis, U.C. Berkeley, Oct. 1992.

[Tay68] M. G. Taylor. Reliable informatoin storage in mem-
ories designed from unreliable components. Bell System
Technical Journal, 47:2299-2337, 1968.

[vL92] J. H. van Lint.
Springer-Verlag, 1992.

Introduction to Coding Theory.

[VN56] J. von Neumann. Probabilistic logics and the syn-
thesis of reliable organisms from unreliable components. In
C. E. Shannon and J. McCarthy, editors, Automata Studies.
Princeton University Press, 1956.

[Win62] S. Winograd. Coding for logical operations. IBM
J. Res. Develop., 6:430-436, 1962.

