Implicit Communication for Control

Gireeja Ranade
Works of Pulkit Grover, Anant Sahai, Se Yong Park

Decentralized control: "observer-controller" problem

Decentralized control: a simple example

coordination

Coordination via explicit communication

separate estimation and control
point-to-point communication
[Shannon '48]

Coordination via implicit communication?

Explicit communication

Implicit communication

1. channel: the system itself
2. messages: endogenously generated

Implicit communication: an example

Toy implicit communication problem: Witsenhausen's counterexample

Implicit communication interpretation :

$$
\mathbb{E}\left[u_{1}^{2}\right] \leq P \quad M \rightarrow
$$

A brief history of Witsenhausen's counterexample

Linear, Quadratic, Gaussian

Nonlinear strategies can outperform linear [Witsenhausen '68]
. . . by an unbounded factor [Mitter, Sahai '99]
Finding optimal strategy is NP-hard [Papadimitriou, Tsitsiklis '84]
Semi-exhaustive search techniques [Baglietto, Parisini, Zoppoli '01] [Lee, Lau, Ho '01]
[Lee, Marden, Shamma '09]

Understanding Witsenhausen's counterexample: A deterministic abstraction

Implicit communication interpretation :

$$
\mathbb{E}\left[u_{1}^{2}\right] \leq P \quad M M S E=\mathbb{E}\left[\left(x_{1}-\widehat{x}_{1}\right)^{2}\right]
$$

Strategies for the deterministic abstraction

Asymptotically infinite-length extension of Witsenhausen's counterexample

$$
\begin{aligned}
& \mathbf{x}_{0}^{m} \sim \mathcal{N}\left(0, \sigma_{0}^{2} \mathbb{I}\right)
\end{aligned}
$$

hope : can use laws of large numbers to simplify

A strategy : vector quantization

Asymptotic upper bound : $\overline{\mathcal{C}}=k^{2}+0$

Ratio of upper and lower bounds

$$
\begin{aligned}
& \mathbf{x}_{0}^{m} \sim \mathcal{N}\left(0, \sigma_{0}^{2} \mathbb{I}\right) \\
& \min \left\{\frac{k^{2}}{m} \mathbb{E}\left[\left\|\mathbf{u}_{1}^{m}\right\|^{2}\right]+\frac{1}{m} \mathbb{E}\left[\left\|\mathbf{x}_{1}^{m}-\widehat{\mathbf{x}}_{1}^{m}\right\|^{2}\right]\right\}
\end{aligned}
$$

13/22

. . . with dirty-paper coding strategy

Conjectured optimal strategy: Dirty-paper coding

Finite-vector lengths

Quantization upper bounds

17/22

Lower bound

Use old lower bound

Theorem [Grover, Sahai '08]

$$
\begin{aligned}
& \overline{\mathcal{C}}_{\text {min }} \geq \inf _{P \geq 0} k^{2} P+\left((\sqrt{\kappa(P)}-\sqrt{P})^{+}\right)^{2} \\
& \kappa(P)=\frac{\sigma_{0}^{2}}{\left(\sigma_{0}+\sqrt{P}\right)^{2}+1}
\end{aligned}
$$

[Shannon '59][Shannon, Gallager, Berlekamp '67] [Blahut '74][Pinsker '67][Sahai '06][Sahai, Grover '07][Polyanskiy, Poor, Verdu '08]

Need bounds that work in a distortion setting!

Large-deviation technique to tighten the lower bound

Lower bound

reality

Noise can behave atypically!
Atypical noise behaviors are typical under a different distribution

$$
\begin{aligned}
& \overline{\mathcal{C}}_{\text {min }} \geq \inf _{P \geq 0} k^{2} P+\left((\sqrt{\kappa(P)}-\sqrt{P})^{+}\right)^{2} \\
& \kappa(P)=\frac{\sigma_{0}^{2} \sigma_{G}^{2}}{\left(\sigma_{0}+\sqrt{P}\right)^{2}+\sigma_{G}^{2}}
\end{aligned}
$$

"Sphere-packing" extension of lower bound

Summary

Implicit communication promises substantial gains
. . . can be understood using information theory

Deterministic abstractions yield useful insights

Large-deviation techniques are needed to obtain finite-length results

The finite-length lower bound

For $\sigma_{G}^{2} \geq 1$ and $L>0$

$$
\begin{gathered}
\bar{J}_{\min }\left(m, k^{2}, \sigma_{0}^{2}\right) \geq \inf _{P \geq 0} k^{2} P+\eta\left(P, \sigma_{0}^{2}, \sigma_{G}^{2}, L\right), \\
\eta\left(P, \sigma_{0}^{2}, \sigma_{G}^{2}, L\right)=\frac{\sigma_{G}^{m}}{c_{m}(L)} \exp \left(-\frac{m L^{2}\left(\sigma_{G}^{2}-1\right)}{2}\right)\left(\left(\sqrt{\kappa_{2}\left(P, \sigma_{0}^{2}, \sigma_{G}^{2}, L\right)}-\sqrt{P}\right)^{+}\right)^{2}, \\
\kappa_{2}\left(P, \sigma_{0}^{2}, \sigma_{G}^{2}, L\right):=\frac{\sigma_{0}^{2} \sigma_{G}^{2}}{c_{m}^{\frac{2}{m}}(L) e^{1-d_{m}(L)}\left(\left(\sigma_{0}+\sqrt{P}\right)^{2}+d_{m}(L) \sigma_{G}^{2}\right)} \\
c_{m}(L):=\frac{1}{\operatorname{Pr}\left(\left\|\mathbf{Z}^{m}\right\|^{2} \leq m L^{2}\right)}=(1-\psi(m, L \sqrt{m}))^{-1} \\
d_{m}(L):=\frac{\operatorname{Pr}\left(\left\|\mathbf{Z}^{m+2}\right\|^{2} \leq m L^{2}\right)}{\operatorname{Pr}\left(\left\|\mathbf{Z}^{m}\right\|^{2} \leq m L^{2}\right)}=\frac{1-\psi(m+2, L \sqrt{m})}{1-\psi(m, L \sqrt{m})}
\end{gathered}
$$

