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Question

Given a network of noisy logic gates, what is the redundancy
required if we want to compute the a Boolean function reliably?

noisy: gates produce the wrong output independently with error
probability no more than ε.
reliably: the value computed by the entire circuit is correct with
probability at least 1− δ
redundancy:

minimum #gates needed for reliable computation in noisy circuit
minimum #gates needed for reliable computation in noiseless circuit

I noisy/noiseless complexity
I may depend on the function of interest
I upper bound: achievability
I lower bound: converse
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Part I
Lower Bounds for the Complexity of

Reliable Boolean Circuits with Noisy Gates
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History of development
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[Dobrushin & Ortyukov 1977]
I Contains all the key ideas
I Proofs for a few lemmas are incorrect

[Pippenger & Stamoulis & Tsitsiklis 1990]
I Pointed out the errors in [DO1977]

I Provide proofs for the case of computing the parity function
[Gács & Gál 1994]

I Follow the ideas in [DO1977] and provide correct proofs
I Also prove some stronger results

In this talk
We will mainly follow the presentation in [Gács & Gál 1994].



Problem formulation
System Model
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Boolean circuit C
a directed acycic graph
node ∼ gate
edge ∼ in/out of a gate

Gate g
a function g : {0, 1}ng → {0, 1}

I ng: fan-in of the gate

Basis Φ

a set of possible gate functions
e.g., Φ = {AND,OR,XOR}
complete basis
for circuit C: ΦC

maximum fan-in in C: n(ΦC)

Assumptions
each gate g has constant number
of fan-ins ng.
f can be represented by
compositions of gate functions in
ΦC .



Problem formulation
Error models (ε, p)
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Gate error
A gate fails if its output value
for z ∈ {0, 1}ng is different from
g(z)

gates fail independently with
I fixed probability ε

used for lower bound proof

I probability at most ε

ε ∈ (0, 1/2)

Circuit error
C(x): random variable for output
of circuit C on input x.
A circuit computes f with error
probability at most p if

P [C(x) 6= f(x)] ≤ p

for any input x.



Problem formulation
Sensitivity of a Boolean function

Let f : {0, 1}n → {0, 1} be a Boolean function with binary input vector
x = (x1, x2, . . . , xn).
Let xl be a binary vector that differs from x only in the l-th bit, i.e.,

xli =

{
xi i 6= l

¬xi i = l
.

f is sensitive to the lth bit on x if f(xl) 6= f(x).
Sensitivity of f on x: #bits in x that f is sensitive to.

I “effecitive” input size

Sensitivity of f : maximum over all x.
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Asymptotic notations
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f(n) = O (g(n)):

lim sup
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ <∞,
f(n) = Ω (g(n)):

lim inf
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ ≥ 1,

f(n) = Θ (g(n)):

f(n) = O (g(n))

and
f(n) = Ω (g(n))



Main results
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Theorem: number of gates for reliable computation
I Let ε and p be any constants such that ε ∈ (0, 1/2), p ∈ (0, 1/2).
I Let f be any Boolean function with sensitivity s.
Under the error model (ε, p), the number of gates of the curcuit is Ω (s log s).

Corollary: redundancy of noisy computation
For any Boolean function of n variables and with O (n) noiseless complexity
and Ω (n) sensitivity, the redundancy of noisy computation is Ω (log n).
I e.g., nonconstant symmetric function of n variables has redundancy

Ω (log n)



Equivalence result for wire failures
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Lemma 3.1 in Dobrushin&Ortyukov
I Let ε ∈ (0, 1/2) and δ ∈ [0, ε/n(ΦC)].
I Let y and t be the vector that a gate receives when the wire fail and

does not fail respectively.
For any gate g in the circuit C there exists unique values ηg(y, δ) such that
if
I the wires of C fails independently with error probability δ, and
I the gate g fails with probability ηg(y, δ) when receiving input y,
then the probability that the output of g is different from g(t) is equal to ε.

Insights
Independent gate failures can be “simulated” by independently wire
failures and corresponding gate failures.
These two failure modes are equivalent in the sense that the circuit C
computes f with the same error probability.



“Noisy-wires” version of the main result
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Theorem
I Let ε and p be any constants such that ε ∈ (0, 1/2), p ∈ (0, 1/2).
I Let f be any Boolean function with sensitivity s.

Let C be a circuit such that
I its wires fail independently with fixed probability δ, and
I each gate fails independently with probability ηg(y, δ) when receiving y.

Suppose C computes f with error probability at most p. Then the number
of gates of the curcuit is Ω (s log s).



Error analysis
Function and circuit inputs
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Maximal sensitive set S for f
s > 0: sensitivity of f
z: an input vector with s bits that f is sensitive to

I an input vector where f has maximum sensitivity
S: the set of sensitive bits in z

I key object

Bl: edges originated from l-th input
ml , |Bl|
e.g.

I l = 3

I Bl

I ml = 3

1

2

3

4
f(z)



Error analysis
Wire failures

12 / 33

For β ⊂ Bl, let H(β) be the event that
for wires in Bl, only those in β fail.
Let

βl , arg max
β⊂Bl

P
[
C(zl) = f(zl)

∣∣H(β)
]

I the best failing set for input zl

Let Hl , H(Bl \ βl)

input l

w1

w2

w3

Bl = {w1, w2, w3}
β = {w2}

Fact 1
P [C(z) 6= f(z) |Hl] = P

[
C(zl) = f(zl)

∣∣H(βl)
]

Proof
I f is sensitive to zl
I ¬zl ⇔ “flip” all wires in Bl

βl is the worst non-failing set for input z



Error analysis
Error probability given wire failures
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Fact 2
P
[
C(zl) = f(zl)

∣∣H(βl)
]
≥ 1− p

Proof
I P

[
C(zl) = f(zl)

]
≥ 1− p

I βl maximizes P
[
C(zl) = f(zl)

∣∣H(β)
]

Fact 1 & 2⇒ Fact 3
For each l ∈ S,

P [C(z) 6= f(z) |Hl] ≥ 1− p
where {Hl, l ∈ S} are independent events. Furthermore, Lemma 4.3 in
[Gács&Gál 1994] shows

P

[
C(z) 6= f(z)

∣∣∣∣∣ ⋃
l∈S

Hl

]
≥ (1−√p)2

The error probability given Hl or
⋃
l∈S Hl is relatively large.



Error analysis
Bounds on wire failure probabilities
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Note

p ≥ P [C(z) 6= f(z)]

≥ P

[
C(z) 6= f(z)

∣∣∣∣∣ ⋃
l∈S

Hl

]
P

[⋃
l∈S

Hl

]

Fact 3 implies

Fact 4

P

[⋃
l∈S

Hl

]
≤ p

(1−√p)2

which implies (via Lemma 4.1 in [Gács&Gál 1994]),

Fact 5

P

[⋃
l∈S

Hl

]
≥
(

1− p

(1−√p)2
)∑
l∈S

P [Hl]



Error analysis
Bounds on the total number of sensitive wires
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Fact 6
P [Hl] = (1− δ)|βl|δml−|βl| ≥ δml

Fact 4 & 5⇒
p

1− 2
√
p
≥
∑
l∈S

δml

≥ s
(∏
l∈S

δml

)1/s

which leads to ∑
l∈S

ml ≥
s

log(1/δ)
log

(
s

1− 2
√
p

p

)

lower bound on the total number of “sensitive wires”



Lower bound on number of gates
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Let NC be the total number of gates in C:

n(ΦC)NC ≥
∑
g

ng

≥
∑
l∈S

ml

≥ s

log(1/δ)
log

(
s

1− 2
√
p

p

)
Comments:

The above proof is for p ∈ (0, 1/4)

The case p ∈ (1/4, 1/2) can be shown similarly.



Block Sensitivity
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Let xS be a binary vector that differs from x in the S subset of indicies, i.e.,

xSi =

{
xi i /∈ S
¬xi i ∈ S .

f is (block) sensitive to S on x if f(xS) 6= f(x).
Block sensitivity of f on x: the largest number b such that

I there exists b disjoint sets S1, S2, · · · , Sb

I for all 1 ≤ i ≤ b, f is sensitive to Si on x

Block sensitivity of f : maximum over all x.
I block sensitivity ≥ sensitivity

Theorem based on block sensitivity
I Let ε and p be any constants such that ε ∈ (0, 1/2), p ∈ (0, 1/2).
I Let f be any Boolean function with block sensitivity b.
Under the error model (ε, p), the number of gates of the curcuit is Ω (b log b).



Discussions
Lower bound for specific functions

Given an explicit function f of n variables, is there a lower boudn that
is stronger than Ω (n log n)?

Open problem for
unrestricted circuit C with complete basis
function f that have Ω (n log n) noiseless complexity for circuit C
with some incomplete basis Φ
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Discussions
Computation model
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Exponential blowup
A noisy circuit with multiple levels

The output of gates at level l goes to a gate at level l + 1

Level 0 has n inputs
I Level 0 has N0 = n logn output gates
I Level 1 has N0 inputs
I Level 1 has N1 = N0 logN0 output gates, . . .

Why?
“The theorem is generally applicable only to the very first step of such a
fault tolerant computation”

If the input is not the original ones, we can choose them to make the
sensitivity of a Boolean function to be 0.

I f(x1, x2, x3, x4, x1 ⊕ x2 ⊕ x4, x1 ⊕ x3 ⊕ x4, x2 ⊕ x3 ⊕ x4)
I Lower bound does not apply: sensitivity is 0. How about block sensitivity?

Problem formulation issue on the lower bound for coded input
I coding is also computation!



Part II
Upper Bounds for the Complexity of

Reliable Boolean Circuits with Noisy Gates
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[Pippenger, “On Networks of Noisy Gates”, 1985]



Overview

Achievability schemes in reliable computation with a network of nosiy
gates.

1. System modeling
I various types of computations

2. Change of basis and error levels
I will skip

3. Functions with logarithmic redundancy
I with explicit construction
I for specific system parameters only

4. Functions with bounded redundancy
I Presents a class of functions with “bounded redundancy”
I Construction for reliable computation

21 / 33



System model: a revisit
Weak vs. strong computation
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perturbation and approximation
Let f, g : {0, 1}k ⇒ {0, 1},
g is a ε-perturbation of f if P [g(x) = f(x)] = 1− ε for any x ∈ {0, 1}k

g is a ε-approximation of f if P [g(x) = f(x)] ≥ 1− ε for any x ∈ {0, 1}k

weakly (ε, δ)-computes
gates: ε-perturbation
output: δ-approximation

strongly (ε, δ)-computes
gates: ε-approximation
output: δ-approximation

Why bother?
ε-perturbation may be helpful in randomized algorithms.



Functions with logarithmic redundancy
Main theorem
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Theorem 3.1
If a Boolean function is computed by a noiseless network of size c, then it is
also computed by a noisy network of size O (c log c).

Comments
Provides explicit construction for some ε and δ values.

I ε = 1/512

I δ = 1/128



Functions with logarithmic redundancy
Construction
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Strategy
Given a noiseless network with 2-input gates, construct a corresponding
noisy network with 3-input gates.

Transformations

noiseless noisy
each wire → cable of m wires
gate → module of O(m)

noisy gates

I Choose m = O(log c)

Additions
coda: computes the majority of m
wires with at most some error
probability

I Corollary 2.6: exists coda with
size O (c log c)

a cable is correct if at least (1− θ)m component wires are correct



Overview
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noiseless −→ noisy coda

Module requirement
If the input cables are “correct”, then the output cable will be correct except
for some small error probability.



Module construction
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executive restoring

correct cables correct except for
small probability

Executive organ
Construction: m noisy gates
that compute the same
function as the corresponding
gate in noiseless network

Restoring organ
Construction: a
(m, k, α, β)-compressor

I if at most αm inputs are
incorrect, then at most βm
outputs will be incorrect.

k = 817, α = 1/64, β = 1/512
Then
Choose system parameters properly, such that the resulting circuit has log-
arithmic redundancy.



Functions with bounded redundancy
Main results

27 / 33

Functions with bounded redundancy
For r ≥ 1, let s = 2r. Let

gr(x0, . . . , xr−1, y0, . . . , ys−1) = yt

where t =
∑r−1
i=0 2ixi i.e., t has binary representation xr−1 · · ·x1x0.

Theorem 4.1
For every r and s = 2r, gr can be computed by a network of O(s) nosiy
gates.

Comments
gr: “indicator function”
Any noiseless networks that computes gr has Ω (2r) gates.

I bounded redundancy
Proof

I Construct a network that strongly (ε = 1/192, δ = 1/24)-computes gr.



Construction
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g1

g1(x0, y0, y1) =

{
y0 x0 = 0

y1 x1 = 1

y0
y1

x0

g1

gr

g2(x0, x1, y0, y1, y2, y3) =


y0 x1x0 = 00

y1 x1x0 = 01

y2 x1x0 = 10

y3 x1x0 = 11

· · ·

gr can be implemented by a binary tree with 2r − 1 elements of g1.
I level r − 2: root
I level 0: leaves
I yt: corresponds to a path from level 0 to r − 2



Construction (cont.)
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Each path only contains one gate at each level
If each gate at level k, 0 ≤ k ≤ r − 2 fails with probability Θ

(
(aε)k

)
, then

the failure probability for a path is Θ (ε).

Construction: replace wires by cables, gates by modules
cable at level k

I input: 2k − 1 wires
I output: 2k + 1 wires

module at level k
I 2k + 1 disjoint networks
I each compute the (2k − 1)-argument majority of the input wires
I then apply g1
I noiseless complexity: O(k)⇒ noisy complexity: O(k log k)

O
(
k2 log k

)
noisy gates at level k

I error probability for each nosiy network: 2ε
error probability for module: 4ε(8ε)k = Θ

(
(8ε)k

)
use coda at the root output for majority vote
total #gate: O(s) = O (2r)



Networks with more than one input
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A network with outputs w1, w2, . . . , wm strongly (ε, δ)-computes
f1, f2, . . . , fm if, for every 1 ≤ j ≤ m, the network obtained by ignor-
ing all but the output wj strongly (ε, δ)-computes fj .

Theorem 4.2
For every a ≥ 1 and b = 22

a

, let ha,0(z0, · · · , za−1), · · · , ha,b−1(z0, · · · , za−1)
denote the b Boolean functions of a Boolean argument.

Then ha,0(z0, · · · , za−1), · · · , ha,b−1(z0, · · · , za−1) can be strongly computed
by a network of O(b) noisy gates.

Proof: similar to Theorem 4.1



Boolean function with n Boolean arguments
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Theorem 4.3
Any Boolean function of n Boolean arguments can be computed by a net-
work of O (2n/n) noisy gates.

Proof
Let a = blog2(n− log2 n)c,
b = 22

a

= 2n/n, r = n− a and
s = 2r = 2n/n.
Theorem 4.2: M strongly
computes ha,0(z0, · · · , za−1),
· · · , ha,b−1(z0, · · · , za−1)

I O(b) = O (2n/n) gates
Theorem 4.1: N strongly
computes
gr(x0, . . . , xr−1, y0, . . . , ys−1)

I O(s) = O (2n/n) gates

M

N

x0
...xr−1

z0
z1

...za−1 wb−1 ys−1

...
...

w1 y1

w0 y0

M and N : strongly computes any Boolean function with n Boolean argu-
ments x0, x1, · · · , xr−1, z0, z1, · · · , za−1.



Bounded redundancy for Boolean functions
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Implication of Theorem 4.3
[Muller, “Complexity in Electronic Switching Circuits”, 1956]: “Almost all”
Boolean functions of n Boolean arguments are computed only by
noiseless networks with Ω (2n/n) gates
“Almost all” Boolean functions have bounded redundancy.

Set of Boolean linear functions
A set of m Boolean functions f1(x1, · · · , xn), . . . , fm(x1, · · · , xn) is linear
if each of the functions is the sum (modulo 2) of some subset of the n
Boolean arguments x1, · · · , xn.
“Almost all” sets of n linear functions of n Boolean arguments have
bounded redundancy.

I Similar approach
I Theorem 4.4



Further readings. . .

N. Pippenger, “Reliable computation by formulas in the presence of
noise”, 1988
T. Feder, “Reliable computation by networks in the presence of
noise”, 1989
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