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Motivation

Goals

• Provide a framework for exploring automata

• Give performance guarantees from unreliable automata

• Relate theory to electronic or neural circuitry

Historical Context
• First presented at Caltech by von Neumann

• Manuscript based on lecture notes taken by R.S. Pierce
• von Neumann added text to prepare for publication

• Five versions of the manuscript exist with different typesets,
figures and content

• This presentation is based on the first manuscript
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Automata Theory

Definition
A single-output automaton with time delay τ is a finite set of
inputs, one output and a set of preferred subsets of inputs. The
automaton stimulates its output at time t+ τ if a preferred state
appears at time t.

Comments

• Automata differs from logic in that there is a time dimension

• We treat automata as “black boxes”
• Each input or output is allowed two states:

• “unstimulated”(0)
• “stimulated” (1)

• For n inputs, there exist 22n automata of a certain τ
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Automata Theory

Example

• Excitatory inputs

• Inhibitory inputs

• Threshold function

ϕ(x) =







0, x < h;

1, x ≥ h,

where h = #ex +#in.
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Basic Organs

Definition
Two single-output automata are equivalent in the wider sense if
they differ only in their time delays, not input-output behavior.

Theorem
Any single-output automaton is equivalent in the wider sense to a
network of basic organs. There exists a unique τ⋆ such that the latter
network exists iff its time delay is τ > τ⋆

Comment: Actually, any two organs above form a basis.
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Single Basic Organs

Scheffer Stroke (NAND)

• Ā = S(A,A)

• A ·B = S(S(A,B), S(A,B))

• A+B = S(S(A,A), S(B,B))

Majority Organ (“best out of three”)

• A ·B = M(A,B, 0)

• A+B = M(A,B,∞)

• Ā can be derived from AND and
OR
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Examples

Memory Machine: X is stimulated τ after the first time A is stimulated
(i.e. memory tape)

Memory Organ: X is stimulated iff A was stimulated earlier such that
no stimulation of b occurred since
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Error in Automata

Error considerations

• Mechanical and electric units are subject to failure

• Assume: for every operation, the organ will fail to function
correctly with precise probability ǫ

• Failures ε are assumed statistically independent of time and
state of network

• More generally, failures can be dependent but are
upper-bounded by ǫ

Goal: Find the limits of the smallness of ǫ such that performance of
automata can be reliable (Pr(ε) < δ)
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Example: The Memory Organ

Scenario

• Memory machine

• Stimulation only at time t

• Error probability ǫ

After s cycles after t, probability organ is still stimulated is

ρs ≈
1

2
+

1

2
e−2ǫs

Conclusion: ρs → 1/2 as s → ∞

“... is not so much that incorrect information will be obtained, but
rather that irrelevant results will be produced.”
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Controlling Error 1: Multiple Machines

Run m versions of network O in parallel, use majority organ to
determine output values

Analysis

• Assume η is upper bound on error of O

• Error at majority organ output is upper bounded by
η⋆ = ǫ+ (1− 2ǫ)(3η2 − 2η3)

• Roots at 1

2
, η0 =

1

2

(

1−

√

1− 6ǫ

1− 2ǫ

)

, 1− η0

• Latter two roots are only real if ǫ < 1/6
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Controlling Error 1: Multiple Machines

Consider successive occurences of the network (η becomes η⋆)

• If ǫ > 1/6, η → 1/2

• If ǫ < 1/6, η → η0

End Result: Reliable computation is possible, with necessary error
level satisfying η0 ≈ ǫ+ 3ǫ2
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Controlling Error 1: Multiple Machines

More general argument (Sections 8.3.2 – 8.4 )

• Network P made up of arbitrary basic organs

• Each output’s error probability is bounded by η1

• Use induction to reduce P into networks with smaller serial
chains with maximum length denoted µ

• Necessary error level satisfies η1 = 4ǫ+ 152ǫ2

• Procedure is impractical because new network needs 3µ(P) as
many organs as the original network P
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Controlling Error 2: Multiplexing

Each message is carried on a “bundle” of N wires

• For ∆H < 1/2, stimulation of at least (1−∆H)N lines is
interpreted as 1

• For ∆L < 1/2, stimulation of at most ∆LN lines is 0

• Everything else is malfunction

Executive organ

Issue: Output wires may have different values
Fix: Allow for a restoring organ to ensure bundle wires have the
same value
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Controlling Error 2: Multiplexing

Error Types

• Organ malfunction (with probability ǫ)
• Bundles not entirely stimulated or unstimulated (errors in wires)

• Pr(0 → 1) = η

• Pr(1 → 0) = ξ

Goal: For a computation, find N such that probability of malfunction is
η

Assume: Scheffer (NAND) for executive organs, majority for restoring
organ
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Controlling Error 2: Multiplexing

Proof Sketch

• Use combinatorial argument to determine probability of error
propagated by wire errors

• Use Stirling’s formula to get Gaussian approximation of error

• Variance increases with executive and restoring organ failures

Constructive scheme

1. Design network R for function to be computed assuming
error-free parts

2. Determine number of basic organs needed (denoted m) and let
δ = η/m

3. Find N so that error probability of each organ is δ

4. Create multiplexed system with bundles of N wires
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Controlling Error 2: Multiplexing

Comments

• For fixed N and ǫ, δH = δL = 0.07 is best, according to
back-of-the-envelope calculation

• Maximum allowable ǫ is 0.0107

• For two practical examples, N = 20, 000 is a good approximation

Comparison to multiple machines

• Requires N as many wires and 3N as many basic organs versus
exponentially more
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Extensions

Memory considerations

• Model assumes random permutations of wires in a bundle to
simplify calculations

• This is hard to maintain when network contains feedback

Multiplexing as analog computation

• For large N , can model bundle as an analog signal

• This is similar to modern logic gates

Multiplexing to explain neuroscience

• von Neumann discusses implications in neural circuits

• At the time of the presentation, neural systems are the only ones
dense and reliable enough to match his theory
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A Final Note

In the introduction, von Neumann writes:

“Our present treatment of error is unsatisfactory and ad hoc. It is the
author’s conviction, voiced over many years, that error should be
treated by thermodynamical methods and be the subject of a
thermodynamical theory, as information has been by the work of L.
Szilard and C.E. Shannon.”
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