Programmable State-Variable Filter Design For a
Feedback Systems Web-Based Laboratory

by
Rayal Johnson

February 17, 2004

Advanced Undergraduate Project
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
Supervisor: Dr. Kent Lundberg

Abstract

This document discusses the first installation of a weblab for a feedback systems class. A pro-
grammable state-variable filter accessible through the web is designed and analyzed. The filter’s
parameters such as the natural frequency and damping ratio are controlled through a web client
and the effect of each parameter is analyzed and documented.

Contents

1 Introduction

2 State Variable Filter: Theory

3.2.2 PHP Web Interface
4 Measurements
5 Future Work
6 Conclusion
A PIC16F628 Assembly Code

B PHP Code

2.1 Overview s
2.2 Imtegrator Blocks
2.3 Low-Pass Function e
2.4 Band-Pass Function
2.5 High-Pass Function
3 State Variable Filter: Implementation
3.1 Hardware e
3.1.1 Filter e e e e e
3.1.2 DAC-Filter Interface
3.1.3 Computer-DAC Interface
3.2 Software s
3.2.1 Microcontroller Interface: PIC Program

11
11
11
14
14
15
15
16

18

20

21

22

25

1 Introduction

The programmable state-variable filter is the first part of a internet laboratory, also known as a
weblab, for 6.302 (Feedback Systems). The weblab allows students access to real systems through
the web much like the one used for 6.012 (Microelectronic Devices). The weblab allows students to
perform experiments from their computer and eliminates the need to go to lab.

The types of experiments that are performed are frequency responses. To fully understand
the filter responses, these measurements must be made while changing filter characteristics such
as natural frequencies and damping ratio/quality factor. The natural frequencies determine the
bandwith of the filter and the damping ratio/quality factor determine how much peaking occurs
at the corner frequency. In order to change these filter characteristics from a remote terminal, the
circuit representation of the filter needs to be adjusted by the server to which it is connected.

In order for the remote terminal to interface with the server, it must communicate with the server
through a scripting language. The server chosen for this project is the Apache Webserver, which is
a free open source server that is easily configurable and extendable. The scripting language used
is the PHP scripting language, another open-source product. It is used because Apache supports
it and it has a powerful set a functions to create almost any type of application. One of those
applications is the full control of the server’s RS232 serial port which will be used in this project
to both send data to the circuit and to receive data from the circuit.

The overall weblab system consists of the PC/Server controlled by the remote client through the
PHP scripting language, a level shifter, a microcontroller to interpret the server signals and set
filter characteristics, and the filter itself. A system level block diagram of the weblab system is
shown in Figure 1. The DACs are latch free, so as long as the DAC select bits are set at the same
time as the data bits, they will work correctly. This is great for testing the DACs since there are
no timing issues associated with writing to the DACs.

The level shifter changes RS232 logic (412 and —12 volts) from the server to TTL logic (+5 and
0 volts) which can be interpreted by the PIC microcontroller. The microcontroller uses the signals
from the server to determine the values to be sent to each digital to analog converter (DAC) over 8
bits of data. The PIC processor has two input/output ports known as PORTA and PORTB, both
8 bits wide. PORTA is used to DAC selection and PORTB is used to transfer the data.

3]
[}
o DAC [*?
PC/Server N 0
S Wny V.
< n
] l
¢¢ 4 N |
Level | — DAC 3_: Voltage
Shifter || PIC | 8-bit bus Control
— Wh2 ™ Filter
DAC (Volp’ Vobp’ Vohp)

Figure 1: System Level Block Diagram of the Programmable State-Variable Filter

2 State Variable Filter: Theory

2.1 Overview

A very useful filter for teaching any signals class is the state-variable filter. The state-variable
filter’s topology is such that depending on where the output of the filter is read, a low-pass, band-
pass, or high-pass characteristic can be realized. This unique characteristic comes from the filter’s
implementation using only integrators and gain blocks. A block diagram of the state-variable filter
is shown in Figure 2.

Vi +O OVOhE Wh1 Vobp -~ Wh2 Volp -
S S

A

2

Figure 2: State Variable Filter Block Diagram

The three outputs of the filter are shown in Figure 2 as Vi, Vo, and Vyp, corresponding to
the low-pass, band-pass and high-pass filters respectively. Utilizing Black’s formula, the system
function for each filter is as follows:

V.
0141) (8) = - Wn1Wn2 (1)
Vz 84 + 2Cwn13 + Wp1Wn2

\%
obp (S) _ WnlS (2)
Vi s2 + 2Cwn18 + Wnpiwn2

Vonp , v 52

52 + 2Cwn18 + Wpiwn2

where in all cases:
§ = jw (4)

It is the placement of the integrators in the signal path that determine the filters’ responses. The
low-pass filter has both integrators in the forward path. The band-pass filter has one integrator in
the forward path and one in the feedback path. And the high-pass filter has both integrators in
the feedback path.

2.2 Integrator Blocks

The most important part of the state-variable filter is the integrator. And in order to build a
programmable filter, the gain of the integrator needs to be adjustable. An adjustable integrator
can be implemented as shown in Figure 3 with the use of a transconductance amplifier, a capacitor
and an operational amplifier.

@]

Figure 3: Integrator with adjustable gain

The gain of this block is:
Vo, Gu
= ®)

which is exactly what is needed. When this block is used as part of the overall filter, the natural
frequency (wy,) is:

G
=7 ©)
This natural frequency can be adjusted by changing the bias current [,. The bias current is related
to the transconductance Gj; by some constant factor k. The value of this constant was measured
using the circuit in Figure 4 using two sets of Rp and Ry, to simulate current levels used to set w,,
and (. The experiment was performed as follows:

Wn

Table 1: Experiment to determine value of k

The voltage across Rp was set to set a bias current I,,.

Viq is set to a 500 Hz sinusoid.

The gain from V4 to V, is measured.

The Gy is determined as the ratio of the gain to the load resistor Ry,.
The constant k is determined as the ratio of G s to the bias current Ip.

Gl W

The natural frequency’s bias current level is in the millamp range, from 0 to 0.5mA. The damping
ratio’s bias current level is in the microamp range, from 0 to 2.3 A. The results of the experiment
are presented in two graphs, Figure 5 for the natural frequencies and Figure 6 for the damping
ratio. The equations that define the relationships between the the gain A,, the transconductance
G and bias current [, are:

Gy = Lk (7)

Ay, =GuRp (8)
Using the values of the constants k,,, and k¢ determined from experiment, the state-variable filter

was designed to meet the ranges of w, and (required, which are discussed in the implementation
section for the state-variable filter.

Figure 4: Voltage Controlled Amplifier

The transconductance amplifier is slower than the operational amplifier, therefore contributing
non-negligible phase shifts correctable through compensation. !

Transconductance vs Bias Current for Natural Frequency
0.008

4

o
o
o
>
|

0.004 -

0.002

Transconductance Gm (Mhos)

0 0.0001 0.0002 0.0003 0.0004 0.0005
Bias Current Ib (Amps)

Figure 5: Results of w,, bias currents. k,, = 15.029

The use of a lead compensator can correct negative phase shifts by adding positive phase margin to the system.

Transconductance vs Bias Current for Damping Ratio

3e—05

2.5e-05 4

2e—05

1.5e-05 4

1le-05 4

Transconductance Gm (Mhos)

5e—-06 -

0 56-07 1e-06 15e-06 2e-06 2.56-06
Bias Current Ib (Amps)

Figure 6: Results of ¢ bias currents. k¢, = 12.928

2.3 Low-Pass Function

The state-variable low-pass filter has the system function Hyy(s).

w2

n
9
82 + QCWnS + UJ% ()

Hip(s) =

The low-pass filter contains two poles, and therefore it has a roll-off of 40dB/decade. Depending on
the relative locations of the two poles, peaking can occur. If the gain is high enough or in this case,
if the natural frequencies are high enough, complex poles result and peaking occurs. A bode plot
of the filter’s frequency response with changing damping ratio/quality factor is shown in Figure 7.

20

Increasing -
zeta

Magnitude (dB)

Phase (deg)

Figure 7: Bode Plot of Hy(s) = m with varying ¢

The low-pass filter does just that, it lets low frequencies pass and attenuates frequencies higher
than its corner frequency. The corner frequency (wy,), where w,, = wy,1 = wy2 in this bode plot is
10 radians per second (krad/s), therefore, frequencies higher than 10 rad/s are attenuated.

2.4 Band-Pass Function
The state-variable band-pass filter has the system function Hy,(s).

WnS
82 + 2(;0)113 + UJ%

Hip(s) = (10)
The band-pass filter exhibits the peaking seen in the frequency response of the low-pass filter. This
characteristic comes from the fact that the filters have the same closed loop poles.

The band-pass filter’s frequency response explains what it does. The band-pass filter lets a band
of frequencies around its natural frequency, w, = wp1 = wp2 is 10 rad/s in this case to pass,
and attenuates frequencies much higher or much lower than the pass band. The band-pass filter’s
frequency response is shown in Figure 8.

10 T

Increasing
zeta

Magnitude (dB)

45

Phase (deg)
o

1
N
a

-90
10°

Figure 8: Bode Plot of Hy,(s) = 52— with varying ¢

§2+2¢wn stw2

2.5 High-Pass Function
The state-variable high-pass filter has the system function Hpy(s).

52

- 32 + 2CWnS + UJ%

Hpp(s) (11)
The high-pass filter exhibits the peaking seen in the frequency response of the low-pass and the
band-pass filters due to the fact that it too has the same closed loop poles. The band-pass filter’s
frequency response is shown in Figure 9. This filter lets high frequencies, those higher than its

Increasing -
zeta

Magnitude (dB)

Phase (deg)

Figure 9: Bode Plot of Hyy(s) = ;HCS:W with varying ¢

natural frequency, w, = w,1 = wp2 in this case, also 10 rad/s to pass and attenuates all other
frequencies.

10

3 State Variable Filter: Implementation

3.1 Hardware
3.1.1 Filter

Moving from the state-variable filter theory, the circuit implementation of the filter can be
synthesized using common analog building blocks such as: integrators, gain blocks, adders and
subtractors. The circuit implementation is appended as Figure 26.

From some hand analysis, a block diagram can be developed showing exactly how the circuit
implementation is related to the block diagram shown in Figure 2. Kirchoff’s current rule at the
inverting input of U12 of Figure 26 gives:

E Vohp + Vol D
Rs; Rs Rar

Assuming Rs = R17 = Rg and multiplying both sides of the equation by Ry, and solving for Vi,
we get:

+ VorpGaruas = 0 (12)

Vorp = —(Voip + Vi + VorpGmu2s Rs) (13)

which represents the first adders in Figure 2. Continuing along the signal path from Vi, to Vi,
we get the equation:

Gumuia
Vobp: ohp C7S (14)

which is the first integrator of the block diagram 2. Immediately apparent from this block is the
value of w,,1, which is:

(15)

The next block that is easily recognized is the feedback block from Vi, to the adder, which repre-
sents the value of 2¢. From this circuit, we see that this value translates into:

2¢ = GpuasRs. (16)

Continuing in the signal path from V;, to V,;, we encounter another integrator of the form:

Gmus
Vo, = Vopp——— 17
=TT o (17)
which gives the value of w,2, which is:
Gmuse
N . 18
wn2 = —¢ (18)

The last part of the block diagram synthesis is the feedback path from V,,, to the adder, which we
already got from equation 13 which turns out to be unity because of the equal resistor assumption.

11

Vobp o GMU6 Volp

Vi o020 G
C,;s

Y
n

Figure 10: State-Variable Filter Implementation Block Diagram

The fact that the integrators have an noninverting topology is important to get negative feedback
as in the block diagram of Figure 2. The inversion of signals V,, and Vo, of Equation 13 is what
gives the negative feedback, but since V; is also inverted there is a phase shift of 5 from the input
to the outputs. The resulting block diagram from this analysis is shown in Figure 10.

Now that it is confirmed that this circuit matches the block diagram of Figure 2, the parameters
that determine system dynamics can be analyzed. The system’s dynamics is adjustable through
the transconductance amplifiers, and the specific relationships of wy,1,wre and 2¢ to their control

voltages are shown below:
kw, (Vad — Vier1)

nl = 1
“nl RgCr (19)
ko (de - L7“ef2)
ng = —— 20
2 R;C (20)
k¢(Vaa — Viers) Bs
2¢ = 21

The the last 3 equations were used to determine values for resistors and capacitors based on desired
ranges of wp1, wpa, and ¢. The desired range of both w,; and w2 is 0 to 62.832 krad/s which
corresponds to 10kHz. The desired range for ¢ is from 0 to 2. Using the standard capacitor value
of 68nF, V,cf_mas of 5 volts, and Vpg of 0.6 volts, the desired value for Rg and Ry is 15 kf2, and
the desired value for Rqg is 3.2 M.

To understand where these equations originate, it is important to take a look at the circuit in
Figure 11. This circuit is used to set the bias current for each transconductance amplifier pertaining
to each system variable, i.e. wy1, wnpe and (. To see how the output bias current I, is related to
the reference voltage V., a feedback block diagram of this circuit is analyzed. The block diagram
is shown in Figure 12.

The circuit in Figure 11 works through the use of two feedback loops to create a bias current
dependent only on the resistor R, and the reference voltage V,.;. There is a major and minor
feedback loop in this circuit. The minor loop is provided by the emitter follower circuit and the

2Note, this integrator has a noninverting topology since it is the noninverting pin of the transconductance amplifier
that is grounded as opposed to the inverting pin.

12

Vadd

Vref Vb

lo

Figure 11: Circuit for Setting Bias Currents

major loop is provided by the operational amplifier. Using Black’s formula, the reference voltage
Vyey is related to the output bias current I, by Equation 22.

A(s)gm

Io 1+gmR
- : (22)
e T A
\% f + Vb+ I0
re—»O— A(S) —| gm -
Ve Ve
Re
Re

Figure 12: Block Diagram for Bias Current Setting Circuit

The variables A(s), and gm represent the frequency-dependent gain of the operational amplifier,
and the transconductance of the bipolar junction transistor respectively. Assuming V,. is changing

slowly, the gain of the operational amplifier is at DC is 10° according to the TL082 datasheet and
it is assumed that:

A(s)gmRe > 1+ gmR. (23)
and the relationship between V,.; and I, simplifies to:
1, 1
~ 24
V;‘ef Re ()

13

and therefore:
V;“ef

R,
One minor detail omitted when creating the block diagram of Figure 12 is that Vy; has an effect
on the bias current. V4 is assumed to be a small signal ground, and therefore omitted in the block
diagram but the large signal bias current is dependent on this value and therefore the equation
that relates V,.y and I, is more correctly:

I, ~

(25)

_ Vaa—Veey

I
R,

(26)

3.1.2 DAC-Filter Interface

The bias currents that set the dynamics of the filter are set through the use of digital-to-analog
converters. Each DAC receives eight bits of data pertaining to the value of the filter’s characteristics,
which are set by the user. The implementation of the DAC-Filter interface is shown in Figure 25.
The data that is received by the DACs determines the reference voltages V,.ri—3 derived from
Equations 19-21 which are reinterpreted here as:

Vet = Vaad — %ﬂ (27)
n1R7C

Viera = Vaa — % (28)
2C R

Vie Vig — 29

r3=Vad = 3 pe (29)

Future improvements on the programmable filter should use these equations in software to convert
the user’s inputs to eight bit values to set the reference voltages.

3.1.3 Computer-DAC Interface

In order to use the signals from the RS232 interface, they need to be converted from RS232 logic
to TTL logic. This means that the voltages need to be changed from +12 and —12 volts to 0 and
+5 volts. This can done with the use of the Maxim 233 level shifter chip. The Maxim 232 takes
RS232 logic and converts it to TTL for transmitting and vice versa for receiving. The only pins
needed in this project are the ‘transmitted data’, ‘received data’ and ‘ground.” With these three
pins, a serial interface between the server and the PIC microcontoller is possible. The PIC has an
onboard USART, with a receive and a transmit pin, therefore, the only configuration needed can
be done in software.

A diagram of the interface is shown in Figure 13. The protocol for checking if the right variable
is sent is as follows. The PIC is initally set up to wait for a serially transmitted byte of data,
meaning one bit after the other, least significant bit first. There are 8 bits of data, 1 stop bit and
no parity. The processor then stores the variable and sends it back to the server. The server is then
expected to send back to the PIC a ‘1’ if the data matches and a ‘0’ if it does not. The PIC then
checks a counter to determine which variable was sent. The counter only updates when confirmed

14

&
<

.
Serial
Port
o N
6 I Rx |5 & 3 79
7— 2 < < Data
3 4 X ©
8 i Tx < 2 8 <
9 = Q
1 :
— 6 9

Figure 13: Computer-PIC Interface

values are received. The expected order is wp1, wn2, then (. When the data is confirmed and
determined, it is sent to its respective digital to analog converter through PORTB. A simulation
of a conversation between the PIC and the server is shown in words in Table 2. This simulated
conversation shows the same process as the flowchart in Figure 14 in pseudo code. Processes done
in the background implies that the PIC does not tell the server that it is sending the variable to its
corresponding DAC, the server however “knows” because the PIC “asks” for the next variable in

the set of variables. The conversation also shows what happens if an error was to occur and how
it would be handled.

3.2 Software

The filter’s software comes in two interdependent parts. The first part is the PIC microcontroller’s
program which creates an interface between the signals coming from the server and the state-variable
filter itself. The second part is the PHP program which creates an interface between the remote
user and the Apache web server. The values operated on by the two parts of the software are
interdependent and therefore a “handshaking” mechanism is used. The mechanism is also useful
for error checking, making sure that values received by the PIC are values sent by the server. A
complete flow chart of the “handshaking” mechanism is shown in Figure 14.

3.2.1 Microcontroller Interface: PIC Program

In order to interpret the signals sent through the serial port by the server, a microcontroller
is used. The Microchip PIC16F628 microcontroller was used here because it is cheap, requires
few external components, has a Reduced Instruction Set (RISC) processor and has an onboard
Universal Synchronous/Asynchronous Receiver/Transmitter module (USART) for serial interfaces.

The only external components required for immediate programming of the PIC microcontroller
are: two capacitors and a crystal oscillator. These three components generate the processor’s clock.
A 20 MHz crystal oscillator was used in this case making the instruction cycle 200 ns (the PIC has
an internal divide by four, which makes the clock frequency actually 5 MHz).

The RISC architect means that there are few instructions needed to fully control the processor.
In this case, there are only 35 instructions.

15

Table 2: Simulated PIC-Server Conversation

Server: | Here is wy
PIC: | Here is the w,; you sent,
Does it match?
Server: | Yes
PIC: | Ready for wyo now (sent wy; to wyy’s DAC in background)
Server: | Here is w9
PIC: | Here is the w,2 you sent,
Does it match?
Server: | Yes
PIC: | Ready for ¢ now (sent wy2 to wye’s DAC in background)
Server: | Here is ¢
PIC: | Here is the ¢ you sent,
Does it match?
Server: | No (Assuming some error occurred)
Resynchronizing
PIC: | Waiting for ¢
Server: | Here is ¢
PIC: | Here is the ¢ you sent,
Does it match?
Server: | Yes
PIC: | Waiting for next 3 variables (sent ¢ to
(’s DAC in background)

The USART allows the processor to communicate to any other device serially. This module was
the most important part of this project because it provided a way for the system under test to
receive the instructions presented by the webserver.

The flow chart of the server/system interface is presented in Figure 14, along with the actual
implementation.

3.2.2 PHP Web Interface

As stated before, in order to set the variables for the filter, control of the server’s serial port is
required. The PHP scripting language has such capabilities. PHP along with its COM functions
allows the control the server’s serial port running Windows. COM is a technology which allows the
reuse of code written in any language (by any language) using a standard calling convention and
hiding behind APIs the implementation details such as what machine the Component is stored on
and the executable which houses it.

The COM module that was used for this project is provided by ActivExperts from
www.activexperts.com on a trial basis and can be licensed for a fee of $150.00. Alternatives to the
COM module, is to use Apache on Linux, where PHP offers functions to directly control the serial

16

port, or write a Dynamic Linked-Library (.dll) file so that a windows based server can control the
serial port. The PHP code that makes use of this module is shown in Appendix B. The code takes
the user values entered in a form and prepares them for transmission to the webserver and to its
serial port, which is later on interpreted by the PIC processor for setting filter values. There is
a "hand-shaking” mechanism implemented such that PHP and the microcontroller have the same
values presented by the user.

17

4 Measurements

To determine if the programmable filter works as expected, step response experiments were
performed. The natural frequency, along with the damping ratio were set for each experiment
through the use of the PHP web interface and the peak overshoot (P,) and the time to peak
(tp) were measured. The natural frequency and the damping ratio were then determined from
the following equations and compared to the theoretical values for accuracy. For all experiments
Wpl = Wpo = Wy. In the measurement tables w,; and (; are the theoretical values, i.e. set by server,
while wy,. and (. are values calculated from measured values of P, and ¢,,. The errors are represented
by variables (e, and wy,,,,. The two trends that should be visible are: the independence of P, on
wy, and the inverse proportionality between t, and w,,. If these trends are observed, the rest is just

calibration. e
Pp=1+eVi-¢? (30)
LY e o
Table 3: Low-Pass Filter Step Response
fat(kH2) | wpe(krad/s) |t Py | tp(us) | | wne(krad/s) | Cerr (%) | wne,, (%)
2 12.566 0.2 | 1.53 | 282 | 0.198 11.365 -1.0 -9.5
0.4 1.51 284 0.210 11.314 -47.5 -10
0.6 |1.19 | 259 | 0.467 13.717 -22.2 9.2
0.707 | 1.11 | 289 | 0.575 13.286 -18.7 5.7
0.8 | 1.17 | 237 | 0.491 15.216 -38.6 21.1
1.0 | 1.07| 274 | 0.650 15.087 35.0 20.1
4 25.133 0.2 1.54 155 0.192 20.652 -1.0 -17.8
0.4 | 1.51 | 142 | 0.210 22.627 -47.5 -9.97
0.6 1.19 123 0.467 28.884 -22.2 15
0.707 | 1.11 | 119 | 0.575 32.267 -18.7 28.4
0.8 | 1.17| 122 | 0.491 29.558 -38.6 17.6
1.0 | 1.07| 136 | 0.650 30.396 35.0 20.9
6 37.699 0.2 | 154 | 856 | 0.192 37.396 -1.0 0.8
0.4 | 1.51 89 0.210 36.103 -47.5 -4.23
0.6 | 1.19 | 75.5 | 0.467 47.056 -22.2 24.8
0.707 | 1.11 | 77.6 | 0.575 49.481 -18.7 31.25
0.8 1.17 | 74.5 | 0.491 48.404 -38.6 28.4
1.0 | 1.07 88 0.650 46.976 35.0 24.6
8 50.265 0.2 | 154 622 | 0.192 51.464 -1.0 2.4
0.4 1.51 64.8 | 0.210 49.586 -47.5 -1.35
0.6 |1.19 | 57.8 | 0.467 61.465 -22.2 22.3
0.707 | 1.11 55 0.575 69.226 -18.7 37.7
0.8 | 1.17 | 53.2 | 0.491 67.784 -38.6 34.9
1.0 | 1.07 | 57.8 | 0.650 71.571 35.0 42.4

18

From the measurements table, it is clear that the two required trends are present, but aside
from that, the measurements seem to contain a large amount of error within the center values of (.
Reasons for this could be a nonlinear G s of the transconductance amplifiers when they are used
in the overall filter, measurement errors, calibration techniques, i.e. rounding the final value to be
sent to the DAC to rid the data of leading decimals. This rounding function under PHP will round
both 4.5 and 4.99 up to 5. Another problem discovered by the author was the value of k,, and
k¢. The values determined from the test circuit and the values observed in the circuit were not
consistent. The values were adjusted on the server side until an expected response was observed,
but then, this was not the case at all points of measurement as apparent from the low error in
both variables at (= 0.2. There were no other problems other than calibration errors, because the
signals overall appeared to match the step reponses in Figures 15-17

Some of the step response signals for each output are shown in Figures 18-23. These Figures
were taken at a time when (was calibrated well by w,, was not.

19

5 Future Work

Future work to be completed for the weblab project includes the construction of more sys-
tems/filters and the implementation of a graphical user interface (GUI) to control the experiments
and to gather data from those experiments. More robust calibration techiques need also to be
implemented for this specific filter, most likely could be done in the software on the server side.

Other work includes the construction of more filters/systems for experimentation. Although
a state-variable filter is a great example of a low-pass, band-pass and high-pass filter, a more
extensive set of filters are required for feedback systems. Filters that are more specific to 6.302 are
the lag, lead, and the dominant pole compensators/filters. These filters demonstrate the benefits of
feedback to achieve more desirable system dynamics than those of the open-loop or uncompensated
system.

20

6 Conclusion

The programmable state-variable filter is a good start to the installation of a feedback systems
weblab, but the first version is not perfect and can be improved upon. For a version 2, a PIC with
the USART on a separate port from the data port should be chosen. The PIC16F628 was chosen
because it had 2 byte sized ports, an onboard USART, and is inexpensive. The replacement should
have an onboard USART separate from the data ports, in addition to the requirements above.

The shared port of the PIC16F628 causes a 2-bit error because the receive pin is not available to
send data to the DACs since it is configured as an input for the USART. The receive pin therefore
either sits at either 5 volts or ground depending on the output from the level shifter, and cannot
be connected to any other potential. A diagram of the connections between the PIC and the level
shifter is shown in Figure 25. Since the receive pin cannot be used as an output, data bit DB1 is
connected to 5 volts in this case.

The 2 bit error might be acceptable for a first version of the filter but future filters/systems may
require higher precision for acceptable use. In its present state, the DAC is referenced to 5 volts
therefore a 2 bit error represents an error in voltage of just:

2
Verror = 555 = 0.039mV (32)

which represents an error of 981 rad/s in w, and 0.03 in (.
Although the two bits of error is important, this was not the greatest of problems. The greatest
problem is the calibration of the filter which was discussed before. For although the two bit error

caused a maximum of 5.7% error, it does not explain the large 20 to 48% errors observed in the
measurements.

21

A PIC16F628 Assembly Code

3999 99 9 9 9 9 9 9 99999999 I NI NI NININNININNNNNN NN
; Author: Rayal Johnson ;
; Title: PIC16F628 Programmable State-Variable Filter ;

; Description: Programmable state-variable filter that ;
; interacts with a PHP web interface to receive, check ;
; and set values for the filter’s mnatural frequencies ;
; and the damping ratio/Quality factor. ;

list p=16£628,f=inhx32
#include <pl16£628.inc> ;Available at microchip.com
__config Ox3FE1l

PC equ
CNT equ
TEMP equ

org

0x02
0x20
0x21

0x0000

;Initialize porta and portb

start movlw 0x00
bctf STATUS,RPO ;change to
bcf STATUS,RP1 ;bank O
movwf PORTA ;clear PORTA
movlw 0x07 ;turn off comparators and
movwf CMCON ;enable pins for I/0
bsf STATUS,RPO ;bank 1
movlw 0x20
movwf TRISA ;set RA<4:0> as outputs

; TRISA<KS5> always ’1’

;Ports are now initialized

;Set up USART
movlw
movwf
bcf
movlw
movwf
movlw

b’00000010° ;set Receive pin as input

TRISB ;all outputs except RX pin
OPTION_REG,NOT_RBPU ;enable pull-up resistors
0x81 ;set baud rate to 9600

SPBRG ;assuming BRGH =1 (address 99h)
b’00100100° ;bit 6 clear - 8-bit transmission

;bit 5 set - enable transmission

22

movwf
bctf
movlw

movwf

;USART is now

;Programmable

getvars

rcvgo

check

sndDAC1

movlw
movwf

btfss
goto
movf
movwf
movwf

btfss
goto
bcf
movlw
andwf
btfsc
goto
movf

addwf
goto
goto
goto

movlw
movwf
movf

movwf
movlw

TXSTA
STATUS,RPO

b’10010000°

RCSTA

set up

Filter

0x00
CNT

PIR1,RCIF
rcvgo
RCREG, W
TEMP
TXREG

PIR1,RCIF
check
STATUS,Z
0x01
RCREG
STATUS,Z
rcvgo
CNT,W

PC

sndDAC1
sndDAC2
sndDAC3

b’00001001°

PORTA
TEMP,W
PORTB
0x01

;bit 4 clear - asynchronous mode
;bit 2 set - high speed

;bits 7,3,1,0 - don’t care

; (address 98h)

;bank 0O

;bit 7 set - enable serial port

;bit 6 clear - 8-bit reception

;bit 4 set - enables continuous mode
;bits 5, 3:0 - don’t care

; (address 18h)

;set up counter
;for variables

;check receive data
;move data temporarily
;to TEMP, to check with
;server, if data matches

;check server for confirmation

;check data

;for 1 -> for Yes —->data matches
;data doesn’t match, get rid of it
;if data matches,

;send to correct DAC

;match frequency and damping
;with the correct
;DAC

;select DAC1 with PORTA
;DAC1 (omegal) selected
;send omegal to
;omegal-DAC

;set up CNT for

23

movwf CNT ;the next variable

goto rcvgo

sndDAC2
movlw b’00000110’ ;select DAC2 with PORTA
movwf PORTA ;DAC2 (omega2) selected
movf TEMP,W ;send omega2 to
movwf PORTB ;omega2-DAC
movlw 0x02 ;set up CNT for
movwf CNT ;the next variable
goto rcvgo

sndDAC3
movlw b’00001000’ ;select DAC3 with PORTA
movwf PORTA ;DAC3 (damping) selected
movf TEMP,W ;send damp to
movwf PORTB ;damp-DAC
movlw b’00001010° ;hold values in DACs by
movwf PORTA ;setting write pins high
goto getvars ;get ready for next user
end

24

B PHP Code

<html>

<head>

<title>Serial Interface Test</title>
</head>

<body>

<?7php import_request_variables("p", "svi_");

$vdd_n = 5;
$vdd = 5;

$R_6 = 15000;
$C_7 = 6.8e-8;
$k_1 = 16.92;
$R_7 = 15000;
$C_1 = 6.8e-8;
$k_2 = 16.92;

$R_8 = 200000;
$R_18 = 2.0e6;
$k_3 = 18.46;

$true = 1;
$false = 0;
$status = 1;

$s1 = round((($vdd_n - (($svf_omegal*$R_6*$C_7)/($k_1)))/($vdd))*256) ;
$s2 = round((($vdd_n - (($svf_omega2+$R_7*$C_1)/($k_2)))/($vdd))*256) ;
$sd = round((($vdd_n - (($svf_damping*2*$R_18)/(k_3*R_8)))/($vdd))*256) ;

$vl = $s1*(5/256); //voltages in circuit

$v2 = $s2%(5/256) ; //used for testing

$v3 = $sd*(5/256) ; //and troubleshooting

$svfvals = array($s1l, $s2, $sd); //store converted data for DACs

$svfret = arrayQ;

$obj = new COM("ActivXperts.Comport");
$vers= com_get($obj, ‘Version’);

$exp = com_get($obj, ‘ExpirationDate’);

//process form

//set comport ID, baudrate, parity,
//number of databits, stopbits, then open port

25

//send info, then close port

// Object Oriented Version

if (isset($svf_submit) && $svf_action == ‘submitted’)q{
com_set ($obj, PortID, 1); //set port to COM1
com_set ($obj, BaudRate, 9600); //set baud rate to 9600kbps
com_set($obj, DataBits, 8); //set data bits to 8 bits
com_set ($obj, Stopbits, 1); //set stopbits to 1
$obj->0pen() ; //open serial port

for ($i = 0; $i <= sizeof($svfvals)-1; $i++) {

$obj->WriteByte($svivals[$il); //Write data to serial port
if ($obj->ReadByte() == $svfvals[$i]) { //Check if PIC has same value
$obj->WriteByte($true); //if so, tell it true
array_push($svfret, $svfvals[$i]l); //store correct value
} else { $obj->WriteByte($false); //if not right, tell it false
$i=%$i-1; //and resynchronize
}
$obj->Close(); //close serial port
if (($svfret[0] == $svfvals[0]) && //check values to tell user
($svfret[1] == $svfvals[1]) &&
($svfret[2] == $svfvals[2])) {
$errors = ‘‘No errors
’’;
} else { $errors = ‘‘There is an error
’’; }

echo $errors;

echo ‘‘The inputs to the filter are

ω_1 = $svf_omegal
 V(ω_1) = $v1

ω_2 = $svf_omega2
 V(ω_2) = $v2

ζ = $svf_damping
 V(ζ) = $v3

’’;

echo ‘Back’;

} else { //show form

7>

<hr>

<h1>6.302 Web-Based Lab v1.0 Demo</h1>

Expiration date: <7php echo $exp; 7>

</hr>

<form action="<7php echo $_SERVER[‘PHP_SELF’]; 7>" method="post">
Inputs

omegal (ω_1): <input type="text" name="omegal'">

26

omega2 (ω_2): <input type="text" name="omegal2">

damping (ζ): <input type="text" name="damping">

<input type="hidden" name="action" value="submitted">

<input type="submit" name="submit" value="Enter information">
</form>

<7php

+

7>

</body>

</html>

27

Get Data from
HTML form

Convert user’s
to DAC values

Open Serial Port

Close Serial Port

Comment

Write ith data
to serial port

$i=0->Omega 1
$i=1->0Omega 2
$i = 2 -> Damping

T

Input TEMP
from serial

Start PIC

Set up Ports
Set up USART

<

Serial Port
Input to

Store RXREG in
TEMP

Send TEMP to
serial port

Write "0"
to Serial Port

J Write "1"

to Serial Port

!

$i=8%i-1

—

$i=8i+1

L]

Input to

Send to
Omega 1 DAC

Send to
Omega 2 DAC

Send to
Damping DAC

———

CNT=CNT+1

[

Figure 14: Handshaking Between PIC and Webserver

28

Amplitude

Amplitude

Step Response
Low-Pass W, = 31416 vs.

1.5
Increasing {
1k
0.5 4
— (=025
— 7=05
— =075
— =1
— 7=125
O L L L L L L
0 1 2 3 4 5 7 8
Time (sec) x10™
Figure 15: Low-Pass Step Response vs. (
Step Response
Band-Pass W, = 31416 vs.
1
0.8

-0.4
0

Increasing

— 7=025
— 7=05
— 7=0.75
—7=10
— 7=1.25

1 2 3 4 5
Time (sec)

Figure 16: Band-Pass Step Response vs. (

29

Step Response
High-Pass W = 31416 vs.C

1
Increasing ¢
2
E
=] J
£
<
— =025 1
— =05
— =075
— =10 1
— =125
-0.6 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
Time (sec) x 107
Figure 17: High-Pass Step Response vs. (
Tek Run | i 1 Trig'd
g - e TR
: @ —-116mVy
Chil Ampl
204my
Ch1 Freq
304.8 Hz
Ch1 Pk-Pk
S516my
Chil 200mV AA@E] 200mV vAuM1.00ms A Chd £ 416mv
12 Feb 2004
i[10.00 % 20:43:00

Figure 18: Low-Pass Step Response (¢ = 0.2, w,, = 12566 rad/s

30

Tek Run, L.

H A 252mv
: 3 i ! 3 : @ —116my

: . Ch1 Ampl
! T ; ! : 0.00V

A Ch1 Fre
.\ / R i 7 iR A
V) NO rpf

...... PRSI RS 3 ¢ igEeaY § % R 5 Crosslng

i _ : : ch1 Pk—Pk

L EL ey 364my

Ch1[200mV V&(EF 200mV

M[1.00ms A Chd & 416mV]

12 Feb 2004
BE[10.00 %

20:43:33

Figure 19: Band-Pass Step Response (¢ = 0.2, w, = 12566 rad/s

Tele U |

AL 252mV
@; —116mV¥

' - | 5 Shie
s A. ______ A— .00m
o AT T é./.\.A-‘;__\.\;.
il VT R VG o RS

67.80kHz
f - vV Lows

i resolution
i] ; : Ch1 Pk-Pk
: 4 : : : S544mVv

Chi| 200mV A&iE] 200mV WaM[1.00ms A Chd £ 416mv

12 Feb 2004
#(10.00 % 20:44:05

Figure 20: High-Pass Step Response (¢ = 0.2, w,, = 12566 rad/s

31

Te

Ch1[200mV V&(EF 200mV

M[1.00ms A Chd & 416mV]

0#{10.00 %

A 252mv

P @ —116my

Ch1 Ampl
204mv

Ch1 Freq
200.0 Hz

Ch1 Pk-Pk
224my

12 Feb 2004
20:45:04

Figure 21: Low-Pass Step Response (¢ = 1.0, w,, = 12566 rad/s

TekRun | =] Trig'd
- w :
- A A

E')': v I * ' o

Chi] 200mV wBjEEE| 200mV

M[T.00ms A Cha - 416mv

#(10.00 %

AL 252mV

@; —116mV¥

Chil Ampl
0.00Vv

Ch1 Freq
————_.Hz
No ref
crossing

Ch1 Pk-Pk
160my

12 Feb 2004
20:45:33

Figure 22: Band-Pass Step Response ¢ = 1.0, w,, = 12566 rad/s

32

Tek Run | i}] Trig'd
__ I[
| o

Ch1[200mV V&(EF 200mV

M[1.00ms A Chd & 416mV]

0#{10.00 %

| @

A 252mv

—116my

Ch1 aAmpl
5328mv

Ch1 Freq
200.4 Hz

Ch1 Pk-Pk
528my

12 Feb 2004
20:46:07

Figure 23: High-Pass Step Response ¢ = 1.0, w,, = 12566 rad/s

33

28

g 931

oorIIUL DI /HO0d [RLIDS

©|w|~|o

15vde

5V
C10

RUN R1OUT
R2IN R2OUT 20—

TN TIOUT
T2N T20uT HE—

LHEEEEE L

5V
u41 T
17 6
pAOADAE, 18] far ReLRx e
1 8

DAC AIDAC B 2 > RA2 RB2/TX 9 DB2

WR: RA3 RB3 DB3

P —3bRA4TOCKI Rea 10 DB4

16 RB5 [~ DB5

' Lo OSCL/CLKIN RB6 4 DB6

15p OSC2/CLKOUT RB7 DB7

MCLR cs1

= , — =

VoD =
c4
5V PIC16F628
15
P \F
[Title
Programmable State Variable Filter
ize Document Number ev
A 1 1
heet 1 of

Date: Sunday, February 08, 2004
2

3

Gg 231

T 9IIA\ Pue BYR(UM SOV :

Sourt

5vde

“svde
u32 AD644
U33A
o <
14, & 2 RFB A
1 > 2
75 DBL OUTA "
DB2 Vrel
1 g3 —3 .
o DB4 .
DB5 AGND ||I
DB6 N
DB7
Vrefl
S DACAIDACE ouTe 22 2
16| S5 @
WR = RFBB
DGND s AD644
U34A
ng % AD7528
DB2
DB3 .
DB4 -5vde out put bits(RA<3:0>) (w2 d2 w1l dl)
ggg onegal (Vrefl) 1001
DB7 omega2 (Vref2) 0110
DAC AIDAC B 1 danmping (Vref3) 1000
WR 1 svd Vfreq 0100 -> For future use
DAC AIDAC B 2 svde
WR2 j
cs1 j
B u32 AD644
cs2 U35A
o <
1 3 ZreBA
1 DBO > s > >
> DBL OUTA .
11 ggg al, vfreq (for future project)
10
o] DB4 ;
DB5 AGND I
7 DB6
DB7
Vref2
& DACAIDACB ouTs 20 2
16] €S ©
WR =z RFBB
DGND S AD644
U34A
% AD7528
-5vde
[Tifle
Programmable State Variable Filter
ize Document Number ev
A 1
Date:

Tuesday, February 17, 2004 heet 1 of
2 I

9¢

5 I 4 | | 2 | 1
5vdc 5vdc
R6 R7
D 15k 15k
Q2N3906 Q2N3906
Vrefl Vref2
Q1 Q2
TLO82 TLO82
U19A U20A
U15A
TLOB2
+ Vohp
R17
c
200k
c1
™ |?7 “T it
Vi Rs R8 4 Ton 1 68n U16A
A 2 ° 6 TLO82
\ >
E 200k 200k g N
o p Vol p
[=1 f CA3080
= CA3080 = Us
@ = U4 LF411
LF411 = us B
Do LF411 = u7
(=) = u12
. UoA
=] TLO82
e 1
3
= . 7 B Vobp
@ = -
—
CA3080
u23
Vref3
A
g
[Tifle
Programmable State Variable Filter
ize Document Number ev
A 1 1
5Vdc
Date: Jheet 1 of 1
4 3 2 I 1

