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Phase-locked loops are a foundational building block for analog circuit design, particularly 
for communications circuits. They provide a good example system for this class because they 
are an excellent exercise in physical modeling. In these systems, the key variable is the phase 
of a sinusoid. As a first step, then we must be precise about what we mean by the phase of a 
sinusoid. Consider:

v(t) = cos [φ(t)]

We define the frequency of a sinusoid as the instantaneous rate of change of its phase. That 
is:

					     ω ≡

 
EXAMPLE:	 v(t) = cos (ω0t + φ0)

	 PHASE = ω0t + φ0 = φ(t)

	 FREQUENCY =	      = ω0

To be consistent, we write the phase in terms of the frequency:

φ = ∫      ω(t) dt

So to understand phase-locked loops (PLLs) we must make the following conceptual jump...

dφ
dt

dφ(t)
dt

t
-∞
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VOLTAGE PICTURE: SIGNAL 
GENERATOR cos(ω0t + φ0)

PLL PICTURE: ω0t + φ0

Now, the anatomy of a PLL:

PHASE 
DETECTOR

LOOP 
FILTER VCO

Ve Vc cos(ωt + φ)cos(ω0t + φ0)

VOLTAGE PICTURE

VCO = Voltage Controlled Oscillator
ω = k0Vc
Ve = kd (φ0 - φ)
[kd] = V/RAD

Notice, if Ve is constant, φ - φ0 is constant => ω0 = ω

A PLL locks the output of a VCO in frequency and phase to an incoming periodic signal.

SIGNAL 
GENERATOR

PLL PICTURE

VCO is an integrator. Its output frequency is 

kd
Ve Vc φOUT

φIN
Σ F(s) k0

s
-

φe

dφOUT
dt = k0Vc => φOUT = ∫      k0Vcdtt

-∞
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Now, let’s look at how we put together and use PLLs. To start, how does one build a phase 
detector?

1) ANALOG MULTIPLIER:

LPF
VINcos(ω1t+φ1)

X
V01

V02

VOUTcos(ω2t+φ2)

V01 	 = VINVOUT cos(ω1t+φ1) cos(ω2t+φ2)

	 = ½ VINVOUT [cos(ω1t + φ1 + ω2t + φ2) + cos(ω1t + φ1 - ω2t - φ2)]
				  
	 IF ω1 = ω2 = ω
			 
	 V01 = ½ VINVOUT [cos(2ωt + φ1 + φ2) + cos(φ1 -  φ2)]

After LPF, we lose high-frequency component:	

	 V02 = ½ VINVOUT [cos(φ1 -  φ2)]

So we get zero out of the phase detector when φ1 -  φ2 = ± π/2 .

Linearizing about this condition, we would say:

	 ∆v02 = ±                  ∆φ	

                                   k0
(Notice that the constant k0 depends on the amplitude of the sinusoids.) 

2) DIGITAL XOR GATE

>

VINVOUT
2}

VIN VOUT VXOR

0 0 0
0 1 1
1 0 1
1 1 0

VIN

VOUT
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Easiest to analyze in time domain. (Here, assume square wave inputs.)

Т/2

∆t

t

t

t

VIN

VOUT

VXOR

1

1

1

For our phase detector output, we’ll use the average (DC) value of VXOR:

				    VXOR = 	         [1·∆t + 0·(Τ/2 - ∆t)] = 2 ·

Now, how do we relate this to phase? Recall that for a sinusoid:
			 
			         cos(ωt - φ)	= cos (2πft - φ)

					     = cos ( 	       t - φ)

					     = cos	       (t -       ∙ T)

					     = cos	       (t - ∆t) =>  ∆t =        ∙ T
						    
	 THUS:	  VXOR =        (        ∙ T) = 				     
       
		   

1
T/2

∆t
T

2π
T

2π
T

φ
2π

2π
T

φ
2π

φe
2π

2
T

 φe
2π

VXOR

1

π
φe
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There are many other phase detectors, each with their own strengths and weaknesses. More 
on these later...

Application to stabilization of the frequency of a laser

kd

P φOUTφIN Σ 1
s

C(s)
Laser 
Cavity 

Dynamics

Laser Pump 
Power

ωL

Frequency 
of Laser 

Light

Controller

Reference 
Signal

Locks frequency of laser light to a stable reference.

Typical laser cavity dynamics:

			   G(s) = e-ST

                                             delay                                                
				                 second order system

Typical choices for a controller:	 C(s) =	 D0s
						      D0s + P0
						      I0

Returning to a general case, we have L(s) =              F(s), where as a designer you usually have 
some control over the form of F(s). Suppose we choose F(s) = 1, so that L(s) is just            .
What is the steady-state error in response to a constant-frequency input? 

	         cos(ω0t)	              ramp in phase		        

ωn
2

s2 + 2ζωns + ωn
2

1
s

k0kd
s k0kd

s

ω0
s2
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Steady-state error, then, is

	 t—>∞ φe(t) = s —> 0 s         ·		      	 = s —> 0

							       =

=> Large k0kd for small phase error. But according to root locus, 

lim lim ω0
s2

1
1+C(s)

ω0
s

     1
  1+      k0kd

s

lim

ω0
k0kd

jω

σ×

Large k0kd also means large bandwidth. If we have a noisy reference, large bandwidth is not 
a good thing.

We can improve things by being more sophisticated in our choice of F(s):

		  F(s) = 			   =>   L(s) = 

Steady state error is still             , but bandwidth is reduced:

1
τs + 1

k
s(sτ + 1)

ω0
k

-90˚

-180˚

0
1/τ ωC ωC'

ω

log |L|

∡L(s)

45˚
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Now we’ve got our improved noise performance, but increasing k will lower our damping ratio:

jω

σ××

Put another way, increasing k will lower our phase margin.
=> we must decide what stability margins are acceptable in our application.

Suppose we decide that a 25% overshoot in the step response is acceptable. Using our chart of 
2ns order parameters, we discover that this corresponds to ζ = 0.4 and Mp = 1.4. This means we 
should design for a phase margin of

				    Mp ≈
				  
				    φn ≈ sin-1 ( 	 ) ≈ 45˚

We arrange for this by ensuring that |L| = 1 at the frequency for which ∡L(s) = -135˚. Looking 
at our Bode Plot, we see that this frequency is just ω = 1/τ. On the asymptotic magnitude plot, 
|L(s)| at this frequency is   	  =kτ. The actual magnitude is         .

We therefore choose k using

				    = 1 => k = 

1
sinφm

1
mp

k
1/ τ

kτ
√2

kτ
√2

√2
τ


