6.302 Feedback Systems

Recitation 11: Phase-locked Loops
Prof. Joel L. Dawson

Phase-locked loops are a foundational building block for analog circuit design, particularly
for communications circuits. They provide a good example system for this class because they
are an excellent exercise in physical modeling. In these systems, the key variable is the phase
of a sinusoid. As a first step, then we must be precise about what we mean by the phase of a
sinusoid. Consider:

v(t) = cos [¢(t)]

We define the frequency of a sinusoid as the instantaneous rate of change of its phase. That
is:

_do
©="dt
EXAMPLE: v(t) = cos (ot + ¢,)
PHASE = ot + ¢, = ¢(t)
FREQUENCY = d‘git) -,

To be consistent, we write the phase in terms of the frequency:
¢ = oo (t) dt

So to understand phase-locked loops (PLLs) we must make the following conceptual jump...
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VOLTAGE PICTURE: SIGNAL
GENERATOR

PLL PICTURE: SIGNAL
GENERATOR

Now, the anatomy of a PLL:

VOLTAGE PICTURE

cos(w,t + ¢,)
e —

PHASE
DETECTOR

LOOP
FILTER

cos(w,t + ¢,)

wot + (po

VCO

cos(wt + ¢)

VCO = Voltage Controlled Oscillator

W= ko\/C
V. =k, (¢, - )
kd] =V

RAD

Notice, if V_is constant, ¢ - ¢ is constant => 0, = ©

A PLL locks the output of a VCO in frequency and phase to an incoming periodic signal.

PLL PICTURE

Py

kd

F(s)

(POUT

VCO is an integrator. Its output frequency is

dq)OUT

— = KV => ¢ = [l kV dt
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Now, let’s look at how we put together and use PLLs. To start, how does one build a phase
detector?

1) ANALOG MULTIPLIER:
VINCOS(w1t+(p1) VOI v02
— LPF —

VOUTcos((ozt+<p2)

\Y =V, Vour cos( t+,) cos(w,t+¢,)

01 IN " OUT

=%V Vo lcos(t + ¢, + ot + ¢,) + cos(wt + ¢, - wt - ¢,)]

C [Fo =00
Vi, =%V, Vour [cosot + ¢, + ¢,) + cos(Pp, - ¢,)]
After LPF, we lose high-frequency component:

Vi, =%V, Vour [cos(d, - ¢,)]

IN " OUT

So we get zero out of the phase detector when ¢, - ¢, =+ /5.

Linearizing about this condition, we would say:

v =+ YoV g

N o/
k,
(Notice that the constant k  depends on the amplitude of the sinusoids.)

2) DIGITAL XOR GATE
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Easiest to analyze in time domain. (Here, assume square wave inputs.)

Ym L : :

1 5 : .

VOUT E E E

1 s 5
Vo : : L
At_. : A
HI 1 1 1

1
f

For our phase detector output, we'll use the average (DC) value o

= L [LAt+0(72- AD] =2 -

XOR T/2

Now, how do we relate this to phase? Recall that for a sinusoid:

cos(ot - ¢) = cos (2mft - )

= cos (-t - ¢)

_ 20 o0,
=cos—5— (t--=-T)

= cos—=— (t- At) => At= =T

vV -Z (9 P,
THUS: Vo, = (2 -B) = 5=
v

VXOR:
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There are many other phase detectors, each with their own strengths and weaknesses. More
on these later...

Application to stabilization of the frequency of a laser

Reference
Signal

Laser
P )
LSRN C(s) Cavity |—1— e
\_/ /\ Dynamics T S
Controller Laser Pump Frequency
Power of Laser
Light

Locks frequency of laser light to a stable reference.

Typical laser cavity dynamics:

2

G(s) = T Wy
71 s + 20w s + w *
\ /
delay |
second order system
Typical choices for a controller: C(s) = Dgs
Dos1 + P,
I0 s
kK,

Returning to a general case, we have L(s) = F(s), where as a designer you uSLLallly have
some control over the form of F(s). Suppose we choose F(s) = 1, so that L(s) is just —%*

What is the steady-state error in response to a constant-frequency input?

Wy

52

cos(w,t)——> ramp in phase ———>

Page 5



6.302 Feedback Systems

Recitation 11: Phase-locked Loops
Prof. Joel L. Dawson

Steady-state error, then, is

lim lim ® 1 lim N 1
t—>00¢e(t):s—>05|:?l- F(S)] =s—>0 S FkOT;
- %
kol(d

=> Large k k, for small phase error. But according to root locus,

jo

Large k k, also means large bandwidth. If we have a noisy reference, large bandwidth is not
a good thing.

We can improve things by being more sophisticated in our choice of F(s):

k

F(s) = => L(s) = FGES)

Steady state error is still %l , but bandwidth is reduced:

log |L| .
0 v
/ o
AL(s) :
-90= E
_1801__\45°§§\
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Now we’ve got our improved noise performance, but increasing k will lower our damping ratio:

jo

T G
l

Put another way, increasing k will lower our phase margin.
=> we must decide what stability margins are acceptable in our application.

Suppose we decide that a 25% overshoot in the step response is acceptable. Using our chart of
2ns order parameters, we discover that this corresponds to ¢ = 0.4 and M = 1.4. This means we
should design for a phase margin of

1
sing

M =~
P

¢n =~ sin™ (mL) ~ 45"

P

We arrange for this by ensuring that |L| = 1 at the frequency for which xL(s) = -135". Looking
at our Bode Plot, we see that this frequency is just @ = 1/1. On the asymptotic magnitude plot,
|L(s)| at this frequency is J_(T =kt. The actual magnitude is 71(;— .

We therefore choose k using
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