
Recitation 22 — Meltdown

Overview
● Threat model: Attacker has “arbitrary unprivileged code execution on the attacked

system”.
● Attacker’s goal: learn secret data (e.g., passwords, private keys)

The attack
● Step 1: load the secret into a register

○ “Listing 2” in the paper does this with the line mov al, byte [rcx] (puts the secret
into rcx)

○ CPU begins to transfer the virtual address into a physical one, while also
checking permission bits of the virtual address.

○ The permission bits will cause an interrupt, but some of the additional lines of
Listing 2 will have already (started to be) executed.

● Step 2: transmit the secret
○ Line 5 and Line 7 of Listing 2 multiply the secret value by the page size (Line 5),

and add it to the base value of a “probe array” that the attacker has allocated
(Line 7). The probe array is allocated such that none of its memory is cached.

○ At this point, the attacker has taken the value of the secret, and mapped that
value to a particular memory address. For instance, if the value of the secret was
“2”, the address is now base probe array address + 2*page size. What the
attacker needs to know, now, is what that memory address is (base probe array
address + 2*page size), not content that is stored at that memory address (i.e.,
not the content located at base probe array address + 2*page size).

○ When that address is read, it will be stored in the cache.
● Step 3: receive the secret

● The attacker iterates over all of the 256 pages of the probe array (memory that it
has access to). It measures the access time of each access; the fast one is the
address that was cached, and that address - the base address of the probe array
is the secret.

Ways to stop Meltdown
● Disable out-of-order execution. Downside: performance suffers.
● Serialize permission checks and register fetches: Downside: overhead (so, again,

performance suffers).
● Hard split of user/kernel space. More realistic, but still involves new hardware.
● KAISER, a software solution. Still has limitations because some privileged memory

locations are mapped into user space.

Katrina LaCurts, lacurts@mit.edu, 6.033 2022


