
Recitation 16 — MapReduce

Overview
● Distributed system that supports a specific computation model: mapping and reducing.

○ View a document as a set of <key, value> pairs
○ Process those pairs with some map function to get intermediate values, which

are then processed with some reduce function.
● There are often multiple ways to apply this model to a single problem.

Basic functionality
Figure 1 in the paper is a good one for understanding this

● Controller (“master” in paper) has an organizational/control role, like in GFS
● Controller assigns map tasks to workers, considering the locality of data in its

assignments
○ The input data is replicated by GFS

● Workers map, write intermediate data to files
● As mappers finish, controller assigns reduce jobs, tells reduce workers where to access

the intermediate data

Handling failure
● GFS is in place so that if a machine fails, input data is still available
● Partial executions of map and reduce are fine; controller can reassign the task

○ Controller pings workers to detect failures (essentially just like how the HELLO
protocol for routing works)

○ Being able to re-execute tasks also helps with performance: can just re-execute
the tasks of workers who are straggling.

● Paper claims that controller failure is unlikely (the argument would be that, while the
failure of some machine is high, the failure of a specific machine — the controller — is
low)

Discussion
● Is MapReduce simple?
● What trade-offs do we make in this system?
● What can’t MapReduce be used for?


