Recitation 16 — MapReduce

Overview
e Distributed system that supports a specific computation model: mapping and reducing.
o View a document as a set of <key, value> pairs
o Process those pairs with some map function to get intermediate values, which
are then processed with some reduce function.
e There are often multiple ways to apply this model to a single problem.

Basic functionality
Figure 1 in the paper is a good one for understanding this
e Controller (“master” in paper) has an organizational/control role, like in GFS
e Controller assigns map tasks to workers, considering the locality of data in its
assignments
o The input data is replicated by GFS
Workers map, write intermediate data to files
As mappers finish, controller assigns reduce jobs, tells reduce workers where to access
the intermediate data

Handling failure
e GFSisin place so that if a machine fails, input data is still available
e Partial executions of map and reduce are fine; controller can reassign the task
o Controller pings workers to detect failures (essentially just like how the HELLO
protocol for routing works)
o Being able to re-execute tasks also helps with performance: can just re-execute
the tasks of workers who are straggling.
e Paper claims that controller failure is unlikely (the argument would be that, while the
failure of some machine is high, the failure of a specific machine — the controller — is
low)

Discussion
e |s MapReduce simple?
e What trade-offs do we make in this system?
e What can’t MapReduce be used for?



