
Recitation 5 — Eraser

Relation to lecture
● Threads! You’ve seen the problems that occur with concurrency in lecture; this paper

gives you a better idea of how tricky concurrent code is to debug.

Difficulties with threads
● Timing dependencies make concurrency bugs difficult to reproduce
● Bugs can appear long after the execution of the code that caused the bug
● Bugs are often caused by modules interacting; we may have written one of the modules,

but not the other

Prior approaches (to Eraser)
● Some didn’t detect races on dynamically allocated memory
● Others (e.g., “happens-before”) have high overhead and were dependent on the

scheduler.
● Goal for Eraser: low overhead, less dependent on scheduler

Lockset Algorithm
● Dynamically constructs the set of locks that can be associated with each accessed

memory location. If a lockset becomes empty, that indicates a problem.
● Figure 3 in the paper gives a good example of this algorithm
● Extensions to handle common situations:

○ Allow initialization without synchronization, and read-only data after initialization,
by keeping some additional state (Figure 4)

○ Augment the algorithm to handle reader/writer locks, which are a different type of
lock that allows for multiple readers at once (but only one writer)

Implementation/Evaluation
● Implementation shows that binary rewriting is possible, the data structures involved are

reasonable, Eraser runs in practice, etc.
● Eraser slows down applications
● Tested on a fairly wide variety of systems


