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Introduction

I Simple type of quantum computer proposed in 2011 by
Aaronson and Arkhipov based on the statistics of
noninteracting bosons

I The computer A outputs a sample from a probability
distribution DA

I They prove that if there exists a classical algorithm that can
efficiently output a sample from a distribution close to DA,
then P#P = BPPNP: a drastic consequence for complexity
theory!

I Among the strongest evidence to date that quantum
computers have capabilities beyond classical computers.

I Proof relies on random matrix techniques, and requires
two unproven RMT conjectures



Complexity Preliminaries

I Definition (#P)
A function f : {0,1}∗ → N is in #P if there exists a polynomial
p : N→ N and a polynomial-time TM M such that for every
x ∈ {0,1}∗:

f (x) =
∣∣∣{y ∈ {0,1}p(|x |) : M(x , y) = 1

}∣∣∣
I Theorem (Valiant)

The following problem is #P-complete: given a matrix
X ∈ {0,1}n×n, compute Per(X ).

I Theorem (Aaronson-Arkhipov)
The following problem is #P-hard, for any g ∈ [1,poly(n)]:
given a matrix X ∈ Rn×n, approximate Per(X )2 to within a
multiplicative factor of g.



Complexity Preliminaries (2)

I BPP: class of languages efficiently decided with high
probability by a probabilistic TM

I BPPNP machine: a BPP machine that can also solve
NP-complete problems in a single step

I P#P machine: a P machine that can compute
#P-complete functions in a single step

I Stockmeyer: a BPPNP machine can efficiently estimate the
acceptance probability of a BPP machine

I Widely believed that BPPNP ( P#P (can only prove
BPPNP ⊆ P#P)



Preview: Gaussian Permanent Estimation problems

I |GPE|2±: Given as input a matrix X ∼ N (0,1)n×n
C of iid

Gaussians, together with error bounds ε, δ > 0, estimate
|Per(X )|2 to within additive error ±ε · n!, with probability at
least 1− δ over X , in poly(n,1/ε,1/δ) time.

I GPE×: Given as input a matrix X ∼ N (0,1)n×n
C of iid

Gaussians, together with error bounds ε, δ > 0, estimate
Per(X ) to within ±ε · |Per(X )|, with probability at least 1− δ
over X , in poly(n,1/ε,1/δ) time.



Preview: RMT conjectures

I Permanent-of-Gaussians Conjecture (PGC): GPE× is
#P-hard.

I Permanent Anti-Concentration Conjecture (PACC): There
exists a polynomial p such that for all n and δ > 0,

Pr
X∼N (0,1)n×n

C

[
|Per(X )| <

√
n!

p(n,1/δ)

]
< δ

I Theorem: if PACC is true, then GPE× and |GPE|2± are
equivalent



BosonSampling

I n photons sent through linear optical network. Can end up
in m possible photodetectors, for m ≥ n.

I Description of network encoded by m × n
column-orthonormal complex matrix A ∈ Um,n

I Output of computer: measurement of how many photons
end up in each photodetector.

I S ∈ Φm,n, where Φm,n is the set of tuples (s1, . . . , sm) s.t.
si ≥ 0 and

∑
si = n

I By quantum mechanics, output distribution of computer is

Pr
DA

[S] =
|Per(AS)|2

s1! · · · sm!

where AS is n × n matrix constructed by keeping si copies
of row i of A



Exact BosonSampling =⇒ P#P = BPPNP

I Assume ∃ a classical algorithm O(A, r) for A ∈ Um,n and r
a string s.t. the distribution of O over r is DA.

I Then with BPPNP machine, we can compute the squared
permanent of an arbitrary real matrix X : a #P-hard
problem!

I Embed scaled X as a submatrix of A ∈ Um,n (can prove this
is possible)

I Now a certain output probability is proportional to the
squared permanent of X (exponentially small due to scaling
during the embedding)

I Use Stockmeyer result to compute this probability with a
BPPNP machine

I P#P = BPPNP



The problem with the above result

I The classical algorithm O used above was assumed to
sample exactly from DA.

I Not physically reasonable - due to noise, even a boson
computer can’t sample exactly from DA!

I To be reasonable, let O sample from some distribution D′A
s.t. ‖D′A −DA‖ < ε in variation distance.

I But this ruins the above result! If O were adversarial and
knew where we embedded X in A, it could concentrate its
error on the probability corresponding to the permanent of
X , and so a BPPNP machine would no longer be able to
use O to estimate the squared permanent.

I Solution: “smuggle” X into A with the help of RMT, so O
has no way of detecting where the embedded X is in A.



Haar-Unitary Hiding Theorem

I Hm,n: Haar measure over m × n column-orthonormal
matrices

I Sm,n: Distribution obtained by drawing U ∼ Hm,m, and
outputting

√
mUn,n

I Gn×n: Distribution of complex n × n matrices with iid
standard complex Gaussian entries

Theorem
Let m ≥ n5

δ log2 n
δ , for any δ > 0. Then ‖Sm,n − Gn×n‖ = O(δ).

I m1/6 ×m1/6 truncations of m ×m unitaries look like iid
Gaussians



Hiding Lemma

Lemma
Let m ≥ n5

δ log2 n
δ for some δ > 0. Then there exists a BPPNP

algorithm A that takes as input a matrix X ∼ Gn×n, that
“succeeds” with probability 1−O(δ) over X, and that,
conditioned on succeeding, samples a matrix A ∈ Um,n from a
probability distribution DX , such that the following properties
hold:

i) X/
√

m occurs as a uniformly-random n × n submatrix of
A ∼ DX , for every X such that Pr[A(X ) succeeds] > 0.

ii) The distribution over A ∈ Cm×n induced by drawing
X ∼ Gn×n, running A(X ), and conditioning on A(X )
succeeding is simply Hm,n.



Hiding Lemma - proof strategy

I Sample X ∼ Gn×n

I Using rejection sampling and the previous theorem, with
high probability turn X into a sample from Sm,n

I Define DX as sampling from Hm,n, conditioned on X
appearing as a submatrix (up to scaling).

I Complexity theory: BPPNP machine can produce sample
from DX

I By symmetry, distribution of outputs is Hm,n



Approximate BosonSampling

I Assuming ∃ approximate classical sampler O, want to
prove |GPE|2± ∈ BPPNP

I Generate sample X ∼ Gn×n

I With high probability, use the Hiding Lemma to smuggle X
into a matrix A ∈ Um,n

I With X smuggled into A, we can compute the squared
permanent of X with BPPNP machine as before, up to ±
error

I Since A ∼ Hm,n and X ∼ Sm,n, adversarial O can’t corrupt:
no way of knowing where the smuggled X is!

I Assuming RMT conjectures, |GPE|2± is #P-hard problem,
hence P#P = BPPNP as desired.



Permanent of Gaussians Conjecture

PGC: GPE× is #P-hard.
I Plausible for complexity-theoretic reasons
I Analogous result is true for finite fields. Just need to

generalize to C



Permanent Anti-Concentration Conjecture

PACC: There exists a polynomial p such that for all n and δ > 0,

Pr
X∼N (0,1)n×n

C

[
|Per(X )| <

√
n!

p(n,1/δ)

]
< δ

I Standard deviation of Per(X ) is
√

n!.
I PACC: probability mass of Per(X ) does not concentrate at

very small values relative to σ



Some PACC Evidence

I Tao-Vu (2009): For all ε > 0 and sufficiently large n,

Pr
X∈{−1,1}n×n

[
|Per(X )| <

√
n!

nεn

]
<

1
n0.1

I Aaronson-Arkhipov (Weak PACC): For all α < 1,

Pr
X∼Gn×n

[
|Per(X )|2 ≥ α · n!

]
>

(1− α)2

n + 1
.

I Conjecture is proven for determinant instead of permanent
I Supported by numerics



Figure 1: Distribution of |Per(X )| for X ∼ G7×7. 10,000 samples were
taken. Note that

√
7! ≈ 71.


