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Introduction

» Simple type of quantum computer proposed in 2011 by
Aaronson and Arkhipov based on the statistics of
noninteracting bosons

» The computer A outputs a sample from a probability
distribution Dy

» They prove that if there exists a classical algorithm that can
efficiently output a sample from a distribution close to D,
then P#P = BPPNP: a drastic consequence for complexity
theory!

» Among the strongest evidence to date that quantum
computers have capabilities beyond classical computers.

» Proof relies on random matrix techniques, and requires
two unproven RMT conjectures



Complexity Preliminaries

» Definition (#P)
A function f: {0,1}* — N is in #P if there exists a polynomial
p: N — N and a polynomial-time TM M such that for every
x € {0,1}*:

f(x) = Hy e {0,137 . M(x, y) = 1}]

» Theorem (Valiant)
The following problem is #P-complete: given a matrix
X € {0,1}™" compute Per(X).

» Theorem (Aaronson-Arkhipov)
The following problem is #P-hard, for any g € [1, poly(n)]:
given a matrix X € R"™", approximate Per(X)? to within a
multiplicative factor of g.



Complexity Preliminaries (2)

» BPP: class of languages efficiently decided with high
probability by a probabilistic TM

» BPPNP machine: a BPP machine that can also solve
NP-complete problems in a single step

» P#P machine: a P machine that can compute
#P-complete functions in a single step

» Stockmeyer: a BPPNP machine can efficiently estimate the
acceptance probability of a BPP machine

» Widely believed that BPPN? ¢ P#P (can only prove
BPPNP C p#P)



Preview: Gaussian Permanent Estimation problems

» |GPE|3: Given as input a matrix X ~ N(0,1)2*" of iid
Gaussians, together with error bounds ¢, > 0, estimate
|Per(X)|? to within additive error +¢ - n!, with probability at
least 1 — d over X, in poly(n,1/¢,1/9) time.

» GPE.: Given as input a matrix X ~ N(0,1)2*" of iid
Gaussians, together with error bounds ¢, > 0, estimate
Per(X) to within +e - |Per(X)|, with probability at least 1 — o
over X, in poly(n,1/e,1/6) time.



Preview: RMT conjectures

» Permanent-of-Gaussians Conjecture (PGC): GPE is
#P-hard.

» Permanent Anti-Concentration Conjecture (PACC): There
exists a polynomial p such that for all nand ¢ > 0,

|
Pr Per(X)| < v s
X~N(0,1)75" p(n,1/6)

» Theorem: if PACC is true, then GPE, and |GPE|3 are
equivalent



BosonSampling

» n photons sent through linear optical network. Can end up
in m possible photodetectors, for m > n.

» Description of network encoded by m x n
column-orthonormal complex matrix A € Um n

» Output of computer: measurement of how many photons
end up in each photodetector.

» S e dpyp, Where & is the set of tuples (sy, ..., Sn) s.t.
s;i>0and si=n

» By quantum mechanics, output distribution of computer is

[Per(As)[?

7FD’£[S]: Sl 8p!

where Ag is n x n matrix constructed by keeping s; copies
of row jof A



Exact BosonSampling = P#P = BPP\P

» Assume 3 a classical algorithm O(A, r) for A€ Upnpand r
a string s.t. the distribution of O over ris Dg,.

» Then with BPPNP machine, we can compute the squared
permanent of an arbitrary real matrix X: a #P-hard
problem!

» Embed scaled X as a submatrix of A € Um , (can prove this
is possible)

» Now a certain output probability is proportional to the
squared permanent of X (exponentially small due to scaling
during the embedding)

» Use Stockmeyer result to compute this probability with a
BPPN" machine

» P#P — gppN\P



The problem with the above result

» The classical algorithm O used above was assumed to
sample exactly from Dg.

» Not physically reasonable - due to noise, even a boson
computer can’t sample exactly from D!

» To be reasonable, let O sample from some distribution D/,
s.t. || D)y — D4l < € in variation distance.

» But this ruins the above result! If © were adversarial and
knew where we embedded X in A, it could concentrate its
error on the probability corresponding to the permanent of
X, and so a BPPN? machine would no longer be able to
use O to estimate the squared permanent.

» Solution: “smuggle” X into A with the help of RMT, so O
has no way of detecting where the embedded X is in A.



Haar-Unitary Hiding Theorem

» Hmn: Haar measure over m x n column-orthonormal
matrices

» Sm,n: Distribution obtained by drawing U ~ Hmn m, and
outputting vmUp

» G™N: Distribution of complex n x n matrices with iid
standard complex Gaussian entries

Theorem5
Let m > T log? 1, for any § > 0. Then ||Smn — G™"|| = O(5).

» m'/8 x m'/® truncations of m x m unitaries look like iid
Gaussians



Hiding Lemma

Lemma
Letm > T log? 2 for some § > 0. Then there exists a BPPNP
algorithm A that takes as input a matrix X ~ G"*", that
“succeeds” with probability 1 — O(0) over X, and that,
conditioned on succeeding, samples a matrix A € Um n from a
probability distribution Dy, such that the following properties
hold:
i) X/v/m occurs as a uniformly-random n x n submatrix of
A ~ Dy, for every X such that Pr[A(X) succeeds] > 0.
ii) The distribution over A € C"™*" induced by drawing
X ~ G™" running A(X), and conditioning on A(X)
succeeding is simply Hm p.



Hiding Lemma - proof strategy

» Sample X ~ g"™<"

» Using rejection sampling and the previous theorem, with
high probability turn X into a sample from Sy

» Define Dy as sampling from #n, n, conditioned on X
appearing as a submatrix (up to scaling).

» Complexity theory: BPPN? machine can produce sample
from Dy

» By symmetry, distribution of outputs is Hm n



Approximate BosonSampling

» Assuming 3 approximate classical sampler O, want to
prove |GPE|2 e BPP"P
» Generate sample X ~ g™"

» With high probability, use the Hiding Lemma to smuggle X
into a matrix A € Umn

» With X smuggled into A, we can compute the squared
permanent of X with BPPNP machine as before, up to +
error

» Since A~ Hmnand X ~ Sy n, adversarial O can’t corrupt:
no way of knowing where the smuggled X is!

» Assuming RMT conjectures, |GPE|2 is #P-hard problem,
hence P#P = BPPNP as desired.



Permanent of Gaussians Conjecture

PGC: GPE is #P-hard.
» Plausible for complexity-theoretic reasons

» Analogous result is true for finite fields. Just need to
generalize to C



Permanent Anti-Concentration Conjecture

PACC: There exists a polynomial p such that for all nand 6 > 0,

vn!
Pr Per(X)| < ————=| < ¢
X~N(0,1)7X7 [Per(X) p(n,1/6)

» Standard deviation of Per(X) is v/nl.

» PACC: probability mass of Per(X) does not concentrate at
very small values relative to o



Some PACC Evidence

» Tao-Vu (2009): For all £ > 0 and sufficiently large n,
NG ] 1

Pr [|Per(X)| < | < 0T

Xe{—1,1}3nxn

» Aaronson-Arkhipov (Weak PACC): For all o < 1,

1 —a)2
P 2> q.nl (7
P [|Per(X)\ > a n] >

» Conjecture is proven for determinant instead of permanent
» Supported by numerics



P&EHib“““” of |Per(X)| for X ~ 7x7 iid Gaussian [10,000 Samples]
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Figure 1: Distribution of |Per(X)| for X ~ G7*7. 10,000 samples were
taken. Note that /7! ~ 71.



