Differential geometrical approach to covariance
estimation

Antoni Musolas

Center for Computational Engineering
Aerospace Computational Design Lab

Massachusetts Institute of Technology (MIT)
musolas@mit.edu

22 April 2016


musolas@mit.edu

Covariance estimation problem

» Broad problem: Given a parameterized family of covariances and
some samples, what is the most representative member of the family?
» Goals of the presentation:
© Can we use a geodesic line between two symmetric positive definite
matrices to define a covariance matrix family?
@ Can we look at the problem of covariance estimation geometrically?
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Geometry of the manifold of positive definite matrices

Let A1 and A belong to Sy (n, n).
» There exists a distance that satisfies:

d(Al’ A2) = d(AI17 Agl)’

d(A1, A2) = d(ZALZT,ZAZT).

» Closed form expression for the distance:

Al,A2 Z |Og /\k

where Ay are the generalized eigenvalues of (A1, Ay).
> A parametrization of the geodesic between A; and A; is given by:

1 _1 _1 1 1 1
Oaysmr () = AZ exp(tlog,(A; 2 A2A; 2))A? = AZUNUTAZ,

where a4, ,4,(t) € Sy(n,n) for all t € R, and A = diag(\«).
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Geodesic as covariance function

Definition (Covariance function)

A one-parameter covariance function is a one-parameter group
¢: R— Sy(n,n).

Lemma (Geodesic as covariance function)

Let A1 and Ay be two elements in Sy (n,n). Then a,a,(t) is a
one-parameter covariance function.

Two possible generalizations:
Q Let A; and A be two elements in S (n, r) for r < n.
@ Let ¢ to be pa,4a,: RP — S, (n, r), for p-variate covariance function.
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Geodesic as covariance function

» lIdea: Interpolation of covariance matrices through a geodesic.

» Example: A log-permeability field Y(x,w) is defined as a Gaussian
process with mean py = 1 and covariance kernel.

1 —_ %|\P
C(x,x) :aaexp<—;<¥> ), L=03,0%=1p=1
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Duality of the covariance estimation problem

» Let y(, ..., y(9 be observations from an n-variate normal dist.
» Let C be a full rank sample covariance matrix of the y(l), .. ,y(q).

» Consider two covariance matrices of interest, A and B, and pa_,5(t).

Maximum likelihood approach to covariance estimation

maximize px(y™, ...,y D|t) (1)

te(—o0,00

s.t. X ~ N(0, pa-5(t))

Minimization of distance approach to covariance estimation

minimize d(pa_5(t), C) (2)

te(—o00,00)
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Divergence measures as spectral functions

Definition (Spectral function)

Let A; and A, be two elements in S, (n, n). A function f(A(A142)) is a
spectral function if it is a differentiable and symmetric map of the n
generalized eigenvalues of (A1, Az) to the reals.

» Examples of spectral functions
» Natural distance in S;(n, n):

d(A1, A)) = Z log® (k).
k=1

» Kullback-Leibler divergence for multivariate normal:

n

Dre (N(0, A)|IN(0, A2)) = >~ (A + log”(Ax) +1)/2.
k=1

» Hellinger distance for multivariate normal:

dren(N(0, A1), N(0, Ay)) = 1 — 22 T A/* (1 + M) ~V/2.
k=1
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Minimizing an spectral function

Lemma (Spectral function minimization)

Let f be a spectral function, then:

> Minimizing f(\#A~8():C)) over t is equivalent to finding t* such that

T,(V(t+)<5f(6zt(t>)

) V()T MA log AMT) = 0.

t+

» Notation:
> X(t)
> X(t
» M=

C3AZUNUTAIC}
(v
2

( ) , a proper eigenvalue decomposition,
1
-iA

ol

U.
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Properties of the proposed optimization problems (1/11)

Lemma (Uniqueness of the solution)

The aforementioned problems are respectively concave and convex, thus:
© There exists a unique t that maximizes the likelihood px(yY, ..., y(@|t) .

© There exists a unique t* that minimizes the distance d(pa—g(t), C).
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Properties of the proposed optimization problems (11/11)

Lemma (ldempotence of the projection)

If C € pasp(t), then:
@ There exists a unique t such that either (i) ()\S(A’B))E = )\S(A’E), or
(i) QB = \BO for sk =1,2...n.
Q@ Moreover, T = t* = t and C = pa_,5(1).
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Solution to the minimization problem

Result 1 (Differential geometrical solution of covariance estimation)

Q If C € pa,5(t), then:
_ k=1 log(Af) — Yk—y log(A%)
> k1 l0g(AF) — k=1 log(My)’

solves the minimization problem, where A AB and XS, are the k-th

t*

eigenvalues of A, B, and C, respectively.
@ This expression also holds when A = aB, for any positive real a.

© Otherwise, t* is the solution of:

N

Tr(log,, (A" C"2AC2)log,,(A)) = 0.

© In all cases, the solution is unique.

©@ The aforementioned t* minimizes the Fisher information metric if data
assumed to be normally distributed with known mean.
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Solution to the maximization problem

Result 2 (Maximum likelihood solution of covariance estimation)

Q Refer to the preceding. If C € pa_,5(t), then the solution in Result 1
continues to hold and t = t*.

@ Otherwise, t is the solution of:
Tr(CA 2 UA tlog,,(N\)UTA™2 — log,,(A)) = 0.

© In all cases, the solution is unique.

Q The aforementioned # minimizes the Kullback-Leibler divergence if
data assumed to be normally distributed with known mean.
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Results in a toy problem

» |llustration of the cost functions in the maximization and minimization
problems in a toy example:
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Pros and cons of our approach

» Advantages of using geodesic as covariance function
» Possibility to use empirical covariance matrices to define richer
parametric families of covariance functions.
» Covariances offer more flexibility for problem-specific tailoring than
classical parametric families of covariance kernels.
» Works properly as a non-stationary covariance kernel.
» Advantages of minimizing distance vs maximizing likelihood
» Do not require to specify a distribution for the data.
» Minimizing distance is the natural way in differential geometry.
» It also minimizes Fisher information metric, which is an intrinsic
property in inference.

» Disadvantages
» Impossibility to recover the covariance generating kernel.
» The covariance matrix must be full rank.
» We require prior knowledge of the problem.
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Conclusions and limitations

» Contributions

» Devised a covariance function that follows naturally from the data.
» Proposed a differential geometrical approach to covariance estimation.

» Limitations
» Computational cost is of the same order than maximizing the likelihood.
» Our covariance function is already discretized, as opposed to the classic
covariance kernels.
» Further research
» Devise a multi-variate covariance function.
» Generalize for low rank covariance matrices.
» Compute error bounds.
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