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Covariance estimation problem

I Broad problem: Given a parameterized family of covariances and
some samples, what is the most representative member of the family?

I Goals of the presentation:
1 Can we use a geodesic line between two symmetric positive definite

matrices to define a covariance matrix family?
2 Can we look at the problem of covariance estimation geometrically?
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Geometry of the manifold of positive definite matrices

Let A1 and A2 belong to S+(n, n).
I There exists a distance that satisfies:

d(A1,A2) = d(A−1
1 ,A−1

2 ),

d(A1,A2) = d(ZA1ZT ,ZA2ZT ).
I Closed form expression for the distance:

d(A1,A2) =

√√√√ n∑
k=1

log2(λk),

where λk are the generalized eigenvalues of (A1,A2).
I A parametrization of the geodesic between A1 and A2 is given by:
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where ϕA1→A2(t) ∈ S+(n, n) for all t ∈ R, and Λ = diag(λk).
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Geodesic as covariance function

Definition (Covariance function)
A one-parameter covariance function is a one-parameter group
ϕ : R→ S+(n, n).

Lemma (Geodesic as covariance function)
Let A1 and A2 be two elements in S+(n, n). Then ϕA1→A2(t) is a
one-parameter covariance function.

Two possible generalizations:
1 Let A1 and A2 be two elements in S+(n, r) for r < n.
2 Let ϕ to be ϕA1→A2 : Rp → S+(n, r), for p-variate covariance function.
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Geodesic as covariance function

I Idea: Interpolation of covariance matrices through a geodesic.
I Example: A log-permeability field Y (x , ω) is defined as a Gaussian

process with mean µY = 1 and covariance kernel.

C(x , x̄) = σ2
Y exp

(
−1
p

( |x − x̄ |
L

)p)
, L = 0.3, σ2

Y = 1, p = 1
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Geodesic as covariance function

I Idea: Interpolation of covariance matrices through a geodesic.
I Example: A log-permeability field Y (x , ω) is defined as a Gaussian

process with mean µY = 1 and covariance kernel.

C(x , x̄) = σ2
Y exp

(
−1
p

( |x − x̄ |
L

)p)
, L = 0.3, σ2

Y = 1, p = 1
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Geodesic as covariance function

I Idea: Interpolation of covariance matrices through a geodesic.
I Example: A log-permeability field Y (x , ω) is defined as a Gaussian

process with mean µY = 1 and covariance kernel.

C(x , x̄) = σ2
Y exp

(
−1
p

( |x − x̄ |
L

)p)
, L = 0.3, σ2

Y = 1, p = 1
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Geodesic as covariance function

I Idea: Interpolation of covariance matrices through a geodesic.
I Example: A log-permeability field Y (x , ω) is defined as a Gaussian

process with mean µY = 1 and covariance kernel.

C(x , x̄) = σ2
Y exp

(
−1
p

( |x − x̄ |
L

)p)
, L = 0.3, σ2

Y = 1, p = 1
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Geodesic as covariance function

I Idea: Interpolation of covariance matrices through a geodesic.
I Example: A log-permeability field Y (x , ω) is defined as a Gaussian

process with mean µY = 1 and covariance kernel.

C(x , x̄) = σ2
Y exp

(
−1
p

( |x − x̄ |
L

)p)
, L = 0.3, σ2

Y = 1, p = 1
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Geodesic as covariance function

I Idea: Interpolation of covariance matrices through a geodesic.
I Example: A log-permeability field Y (x , ω) is defined as a Gaussian

process with mean µY = 1 and covariance kernel.

C(x , x̄) = σ2
Y exp

(
−1
p

( |x − x̄ |
L

)p)
, L = 0.3, σ2

Y = 1, p = 1
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Geodesic as covariance function

I Idea: Interpolation of covariance matrices through a geodesic.
I Example: A log-permeability field Y (x , ω) is defined as a Gaussian

process with mean µY = 1 and covariance kernel.

C(x , x̄) = σ2
Y exp

(
−1
p

( |x − x̄ |
L

)p)
, L = 0.3, σ2

Y = 1, p = 1
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Geodesic as covariance function

I Idea: Interpolation of covariance matrices through a geodesic.
I Example: A log-permeability field Y (x , ω) is defined as a Gaussian

process with mean µY = 1 and covariance kernel.

C(x , x̄) = σ2
Y exp

(
−1
p

( |x − x̄ |
L

)p)
, L = 0.3, σ2

Y = 1, p = 1
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Geodesic as covariance function

I Idea: Interpolation of covariance matrices through a geodesic.
I Example: A log-permeability field Y (x , ω) is defined as a Gaussian

process with mean µY = 1 and covariance kernel.

C(x , x̄) = σ2
Y exp

(
−1
p

( |x − x̄ |
L

)p)
, L = 0.3, σ2

Y = 1, p = 1
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Geodesic as covariance function

I Idea: Interpolation of covariance matrices through a geodesic.
I Example: A log-permeability field Y (x , ω) is defined as a Gaussian

process with mean µY = 1 and covariance kernel.

C(x , x̄) = σ2
Y exp

(
−1
p

( |x − x̄ |
L

)p)
, L = 0.3, σ2

Y = 1, p = 1
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Duality of the covariance estimation problem

I Let y (1), . . . , y (q) be observations from an n-variate normal dist.
I Let Ĉ be a full rank sample covariance matrix of the y (1), . . . , y (q).
I Consider two covariance matrices of interest, A and B, and ϕA→B(t).

Maximum likelihood approach to covariance estimation

maximize
t∈(−∞,∞)

pX (y (1), . . . , y (q)|t) (1)

s.t. X ∼ N(0, ϕA→B(t))

Minimization of distance approach to covariance estimation

minimize
t∈(−∞,∞)

d(ϕA→B(t), Ĉ) (2)
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Divergence measures as spectral functions

Definition (Spectral function)
Let A1 and A2 be two elements in S+(n, n). A function f (λ(A1,A2)) is a
spectral function if it is a differentiable and symmetric map of the n
generalized eigenvalues of (A1,A2) to the reals.

I Examples of spectral functions
I Natural distance in S+(n, n):

d(A1,A2) =

√√√√ n∑
k=1

log2(λk).

I Kullback-Leibler divergence for multivariate normal:

DKL(N(0,A1)||N(0,A2)) =
n∑

k=1
(λk + log2(λk) + 1)/2.

I Hellinger distance for multivariate normal:

dHell (N(0,A1),N(0,A2)) = 1− 2l/2
n∏

k=1
λ

1/4
k (1 + λk)−1/2.
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Minimizing an spectral function

Lemma (Spectral function minimization)
Let f be a spectral function, then:
I Minimizing f (λ(ϕA→B(t),Ĉ)) over t is equivalent to finding t+ such that:

Tr
(
V (t+)

(
δf (Σ(t))

δt

∣∣∣∣∣
t+

)
V (t+)TMΛt+ log ΛMT ) = 0.

I Notation:
I X (t) = Ĉ− 1

2 A
1
2
1 UΛtUTA

1
2
1 Ĉ−

1
2 ,

I X (t) = V (t)Σ(t)V (t)T , a proper eigenvalue decomposition,
I M = Ĉ− 1

2 A 1
2 U.
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Properties of the proposed optimization problems (I/II)

Lemma (Uniqueness of the solution)
The aforementioned problems are respectively concave and convex, thus:

1 There exists a unique t̂ that maximizes the likelihood pX (y (1), . . . , y (q)|t) .
2 There exists a unique t∗ that minimizes the distance d(ϕA→B(t), Ĉ).

S+(n, n)
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Properties of the proposed optimization problems (II/II)

Lemma (Idempotence of the projection)
If Ĉ ∈ ϕA→B(t), then:

1 There exists a unique t̄ such that either (i) (λ(A,B)
k )t̄ = λ

(A,Ĉ)
k , or

(ii) (λ(B,A)
k )t̄ = λ

(B,Ĉ)
k , for all k = 1, 2 . . . n.

2 Moreover, t̄ = t∗ = t̂ and Ĉ = ϕA→B(t̄).

S+(n, n)
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Solution to the minimization problem

Result 1 (Differential geometrical solution of covariance estimation)

1 If Ĉ ∈ ϕA→B(t), then:

t∗ =
∑n

k=1 log(λĈ
k )−

∑n
k=1 log(λA

k )∑n
k=1 log(λB

k )−
∑n

k=1 log(λA
k )
,

solves the minimization problem, where λA
k , λB

k , and λĈ
k , are the k-th

eigenvalues of A, B, and Ĉ , respectively.
2 This expression also holds when A = αB, for any positive real α.
3 Otherwise, t∗ is the solution of:

Tr(logm(Λt∗Ĉ−
1
2AĈ−

1
2 ) logm(Λ)) = 0.

4 In all cases, the solution is unique.
5 The aforementioned t∗ minimizes the Fisher information metric if data

assumed to be normally distributed with known mean.
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Solution to the maximization problem

Result 2 (Maximum likelihood solution of covariance estimation)

1 Refer to the preceding. If Ĉ ∈ ϕA→B(t), then the solution in Result 1
continues to hold and t̂ = t∗.

2 Otherwise, t̂ is the solution of:

Tr(ĈA−
1
2UΛ−t̂ logm(Λ)UTA−

1
2 − logm(Λ)) = 0.

3 In all cases, the solution is unique.
4 The aforementioned t̂ minimizes the Kullback-Leibler divergence if

data assumed to be normally distributed with known mean.
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Results in a toy problem

I Illustration of the cost functions in the maximization and minimization
problems in a toy example:

t
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Results in a toy problem

I Illustration of the cost functions in the maximization and minimization
problems in a toy example:
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Pros and cons of our approach

I Advantages of using geodesic as covariance function
I Possibility to use empirical covariance matrices to define richer

parametric families of covariance functions.
I Covariances offer more flexibility for problem-specific tailoring than

classical parametric families of covariance kernels.
I Works properly as a non-stationary covariance kernel.

I Advantages of minimizing distance vs maximizing likelihood
I Do not require to specify a distribution for the data.
I Minimizing distance is the natural way in differential geometry.
I It also minimizes Fisher information metric, which is an intrinsic

property in inference.
I Disadvantages

I Impossibility to recover the covariance generating kernel.
I The covariance matrix must be full rank.
I We require prior knowledge of the problem.
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Conclusions and limitations

I Contributions
I Devised a covariance function that follows naturally from the data.
I Proposed a differential geometrical approach to covariance estimation.

I Limitations
I Computational cost is of the same order than maximizing the likelihood.
I Our covariance function is already discretized, as opposed to the classic

covariance kernels.
I Further research

I Devise a multi-variate covariance function.
I Generalize for low rank covariance matrices.
I Compute error bounds.
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