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Pearson Correlation Coefficient

Pearson Correlation Coefficient:
For two jointly distributed random variables X ∈ R and Y ∈ R with finite
positive variance, the Pearson correlation coefficient is defined as:

ρ (X ;Y ) ,
E [(X − E [X ]) (Y − E [Y ])]√

VAR(X )VAR(Y )
.

Properties:

|ρ (X ;Y ) | = 1 if and only if Y is almost surely a linear function of X .

X and Y are independent implies that ρ (X ;Y ) = 0, but the converse
is not true.
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Maximal Correlation

Definition (Maximal Correlation [Rényi, 1959])

For two jointly distributed random variables X ∈ X and Y ∈ Y with
positive variance, the Hirschfeld-Gebelein-Rényi maximal correlation is
defined as:

ρmax(X ;Y ) , sup
f :X→R, g :Y→R :
E[f (X )]=E[g(Y )]=0

E[f 2(X )]=E[g2(Y )]=1

E [f (X )g(Y )] .

Properties:

0 ≤ ρmax(X ;Y ) ≤ 1.

ρmax(X ;Y ) = 0 if and only if X and Y are independent.

ρmax(X ;Y ) = 1 if there exist functions such that f (X ) = g(Y ) a.s.

ρmax(X ;Y ) = ρmax(f (X ); g(Y )) for bijective f : X → R, g : Y → R.

If X and Y are jointly Gaussian, then ρmax(X ;Y ) = |ρ(X ;Y )|.
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Examples of Pearson versus Maximal Correlation

linear data quadratic data
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Examples of Pearson versus Maximal Correlation

cubic data circular data
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Maximal Correlation as a Singular Value

Fix a joint distribution PX ,Y on X × Y ⊆ R× R.

Define Hilbert spaces:

L2 (X ,PX ) ,
{
f : X → R |E

[
f 2(X )

]
< +∞

}
L2 (Y,PY ) ,

{
g : Y → R |E

[
g2(Y )

]
< +∞

}
with inner products ∀f1, f2 ∈ L2 (X ,PX ) , 〈f1, f2〉PX

, E [f1(X )f2(X )],

and ∀g1, g2 ∈ L2 (Y,PY ) , 〈g1, g2〉PY
, E [g1(Y )g2(Y )], respectively.

Define conditional expectation operators,
C : L2 (X ,PX )→ L2 (Y,PY ) and C ∗ : L2 (Y,PY )→ L2 (X ,PX ):

∀f ∈ L2 (X ,PX ) , (C (f ))(y) , E [f (X )|Y = y ]

∀g ∈ L2 (Y,PY ) , (C ∗(g))(x) , E [g(Y )|X = x ]

with operator norms ‖C‖op = ‖C ∗‖op = 1.
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Maximal Correlation as a Singular Value

Theorem (Spectral Characterization [Rényi, 1959])

For random variables X and Y as defined earlier, we have:

ρmax (X ;Y ) = sup
f :X→R, g :Y→R :
E[f (X )]=E[g(Y )]=0

E[f 2(X )]=E[g2(Y )]=1

E [f (X )g(Y )] = sup
f ∈L2(X ,PX )
E[f (X )]=0

‖C (f )‖PY

‖f ‖PX

where the supremum is achieved by some f ? ∈ L2 (X ,PX ) if C is a
compact operator.

Interpretation:

C has largest singular value ‖C‖op = 1 with singular vectors the
constant functions 1X and 1Y : C (1X ) = 1.1Y and C ∗ (1Y) = 1.1X .
f ? ∈ span(1X )⊥ and g? = C (f ?) /ρmax (X ;Y ) are both functions
which maximize correlation and singular vectors corresponding to
ρmax (X ;Y ) = second largest singular value of C .
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Maximal Correlation Functions

Definition (Maximal Correlation Functions)

If C is compact, we refer to pairs of singular vectors of C excluding the
first pair of constant functions as maximal correlation functions.

For which joint distributions PX ,Y are maximal correlation functions
orthonormal polynomials?
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The Hermite Case

Gaussian Conditional Distribution: PY |X=x = N (x , ν) with expectation
parameter x ∈ R and fixed variance ν ∈ (0,∞)

∀x , y ∈ R, PY |X (y |x) =
1√
2πν

exp

(
−(y − x)2

2ν

)
Gaussian Marginal Distribution of X : PX = N (0, p) with fixed
variance p ∈ (0,∞)

∀x ∈ R, PX (x) =
1√
2πp

exp

(
− x2

2p

)

Gaussian Marginal Distribution of Y : PY = N (0, p + ν)

∀y ∈ R, PY (y) =
1√

2π(p + ν)
exp

(
− y2

2(p + ν)

)
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The Hermite Case

Theorem (Hermite SVD)

For Gaussian PY |X and Gaussian PX as defined earlier, the conditional
expectation operator C : L2 (R,PX )→ L2 (R,PY ) has SVD:

∀k ∈ N, C
(
H

(p)
k

)
= σkH

(p+ν)
k

where {σk ∈ (0, 1] : k ∈ N} are the singular values such that σ0 = 1 and
lim
k→∞

σk = 0.

Maximal Correlation Functions:

{H(p)
k with degree k : k ∈ N} - Hermite polynomials that are

orthonormal with respect to PX .

{H(p+ν)
k with degree k : k ∈ N} - Hermite polynomials that are

orthonormal with respect to PY .
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The Laguerre Case

Poisson Conditional Distribution: PY |X=x = Poisson(x) with rate
parameter x ∈ (0,∞)

∀x ∈ (0,∞),∀y ∈ N, PY |X (y |x) =
xye−x

y !

Gamma Marginal Distribution of X : PX = gamma(α, β) with shape
parameter α ∈ (0,∞) and rate parameter β ∈ (0,∞)

∀x ∈ (0,∞), PX (x) =
βαxα−1e−βx

Γ(α)

Negative Binomial Marginal Distribution of Y :

PY = negative-binomial
(
p = 1

β+1 , α
)

with success probability parameter

p ∈ (0, 1) and number of failures parameter α ∈ (0,∞)

∀y ∈ N, PY (y) =
Γ(α + y)

Γ(α)y !

(
1

β + 1

)y ( β

β + 1

)α
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The Laguerre Case

Theorem (Laguerre SVD)

For Poisson PY |X and gamma PX as defined earlier, the conditional
expectation operator C : L2 ((0,∞),PX )→ L2 (N,PY ) has SVD:

∀k ∈ N, C
(
L
(α,β)
k

)
= σkM

(
α, 1

β+1

)
k

where {σk ∈ (0, 1] : k ∈ N} are the singular values such that σ0 = 1 and
lim
k→∞

σk = 0.

Maximal Correlation Functions:

{L(α,β)k with degree k : k ∈ N} - Laguerre polynomials that are
orthonormal with respect to PX .

{M(α,1/(β+1))
k with degree k : k ∈ N} - Meixner polynomials that are

orthonormal with respect to PY .
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The Jacobi Case

Binomial Conditional Distribution: PY |X=x = binomial(n, x) with
number of trials parameter n ∈ N\{0} and success probability
parameter x ∈ (0, 1)

∀x ∈ (0, 1), ∀y ∈ [n] , {0, . . . , n} , PY |X (y |x) =

(
n

y

)
xy (1− x)n−y

Beta Marginal Distribution of X : PX = beta(α, β) with shape
parameters α ∈ (0,∞) and β ∈ (0,∞)

∀x ∈ (0, 1), PX (x) =
xα−1(1− x)β−1

B(α, β)

Beta-Binomial Marginal Distribution of Y :
PY = beta-binomial(n, α, β)

∀y ∈ [n], PY (y) =

(
n

y

)
B(α + y , β + n − y)

B(α, β)
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The Jacobi Case

Theorem (Jacobi SVD)

For binomial PY |X and beta PX as defined earlier, the conditional
expectation operator C : L2 ((0, 1),PX )→ L2 ([n],PY ) has SVD:

∀k ∈ [n], C
(
J
(α,β)
k

)
= σkQ

(α,β)
k

∀k ∈ N\[n], C
(
J
(α,β)
k

)
= 0

where {σk ∈ (0, 1] : k ∈ [n]} are the singular values such that σ0 = 1.

Maximal Correlation Functions:

{J(α,β)k with degree k : k ∈ N} - Jacobi polynomials that are
orthonormal with respect to PX .

{Q(α,β)
k with degree k : k ∈ [n]} - Hahn polynomials that are

orthonormal with respect to PY .
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Why are these joint distributions special?

PY |X is a natural exponential family with quadratic variance function
(introduced in [Morris, 1982]):

∀x ∈ X ,∀y ∈ Y, PY |X (y |x) = exp (xy − α(x) + β(y))

PX belongs to the corresponding conjugate prior family:

∀x ∈ X , PX (x ; y ′, n) = exp
(
y ′x − nα(x)− τ(y ′, n)

)
There are only three such joint distribution families where all
moments exist and are finite:

Gaussian likelihood with Gaussian prior,
Poisson likelihood with gamma prior,
binomial likelihood with beta prior.
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