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Abstract

The log-determinant of a Wigner matrix is a linear statistic of its
singular values, the sum of the logarithm of the singular values:

Σn
k=1 log σk

. We describe some structural properties of the log-determinant of the
Gaussian Unitary Ensemble and the Gaussian Orthogonal Ensemble,
and prove a central limit theorem about general Wigner matrices as
n → ∞. We follow the computations of [?] and [?] and the uni-
versality proof of [?]. Finally, we present numerical results on the
log-determinant.

1 Introduction

The goal of this expository paper is to study the fluctuations of the
log-determinant

log(|det(Hn)|) = 2
n∑
k=1

log(σk) (1)

where σ1, . . . , σn are the singular values of a Wigner matrix Hn.

Definition 1.1. A Wigner matrix is an n×n Hermitian random ma-
trix Hn whose off-diagonal entries Hn(i, j) = Hn(j, i) are centered,
independent identically distributed complex random variables satisfy-
ing E|Hn(i, j)|2 = 1 and EHn(i, j)2 = 0 for all i 6= j and whose diag-
onal entries Hn(i, i) are centered, independent identically distributed
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real random variables satisfying EHn(i, i)2 < ∞. We assume that
the common distribution µ of Hn(i, j) matches a Gaussian up to the
fourth moment. In case µ is a Gaussian, the ensemble is known as
the Gaussian Unitary Ensemble (GUE).

Remark 1.1. As the name suggests, the distribution of the GUE is in-
variant under conjugation by a unitary matrix. A symmetric counter-
part to the GUE is known: the Gaussian Orthogonal Ensemble (GOE).

2 Factorization of the Determinant

In [?], the La Croix and Bornemann discovered a beautiful structure
in what were at the time purely asymptotic results about the log-
determinant of GOE. Tao and Vu, in [?], had proved a central limit
theorem but speculated that a factorization would be out of reach. La
Croix and Bornemann found it (for GUE see [?]), and it included the
term:

χ◦
2m = (ξ41 + 2ξ21ξ

2
2m)1/4,

(notation mine) where ξ1 is distributed according to χ1 and ξ2m is
distributed according to χ2m. I have computed the density of this
random variable in the Appendix in Theorem 5.1.

3 Universality

Since the work of [?], there has been a great interest in understanding
the extent to which the properties of the GUE and GOE are observed
in more general random matrix ensembles.

For ensembles which are invariant under symmetries (unitary trans-
formation, orthogonal transformation), see [?]. Both the heuristics
and the techniques of invariant ensembles work were difficult to ex-
tend to the class of Wigner matrices. Recently this project has been
amenable to the tool-kits of analysts ([?]).

In this section, we give an exposition to some of the core ideas
in that thread of research. In particular, we explain the concept of
microscopic universality, a kind of behavior of the spectrum which is
more rich in allowing a central limit theorem for the log-determinant
to be established than, say, the semi-circle theorem.

We also explain how some of the more central ideas of linear alge-
bra, such as the Cauchy Interpolation Theorem, can be approached to
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create a powerful result in random matrix theory, the Four Moment
Theorem ([?]).

4 Illustration of the theory

In [?], an effort was made toward an understanding of the accuracy
of local laws for Wigner matrices for matrices of small dimension, i.e.
non-asymptotic random matrix theory for Wigner matrices.

In that vein, we present some Julia code and plots that demon-
strates both the Gaussian behavior toward classical universality (i.e.
the comparison of the log-determinant of the GUE and GOE with a
standard normal appropriately rescaled) and the histogram comparing
the ”insensitivity” of the log-determinant (i.e. the comparison of the
GUE/GOE log-determinant with a Wigner matrix log-determinant).

5 Appendix: Density of χ◦2m
Theorem 5.1. Let fχ◦

2m
(t) be the density of χ◦

2m. Then

fχ◦
2m

(t) =
21−mt3

Γ(m)
√

2π

∫ t

0

(√
1

2

(
t4

s2
− s2

))m−2

· 1
s2
·e−s2/2e−

√
1
2
( t4

s2
−s2)/2

ds.

(2)

Proof. Note that

fχ◦
2m

(t) =
d

dt
Pr((ξ41 + 2ξ21ξ

2
2m)1/4 ≤ t).

Now observe that

Pr((ξ41 + 2ξ21ξ
2
2m)1/4 ≤ t) = Pr(ξ21 ≤

√
t4 + ξ42m − ξ

2
2m),

and now using the density of ξ1, we have:

Pr(ξ21 ≤
√
t4 + ξ42m−ξ

2
2m) =

2√
2π

∫ t

0
Pr(s2 ≤

√
t4 + ξ42m−ξ

2
2m)e−s

2/2ds,

with the upper bound on the integral due to the fact that ht(x) =√
t4 + x4−x2 is bounded by t2. Let the inverse of ht(x) in the variable
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x be gt(y). Note that ht(x) is monotone decreasing in x, and therefore
gt(y) is monotone decreasing in y. Therefore

Pr((ξ41 + 2ξ21ξ
2
2m)1/4 ≤ t) =

2√
2π

∫ t

0
Fχ2m(gt(s

2))e−s
2/2ds,

where Fχ2m is the characteristic distribution function of χ2m. Note
that Fχ2m(gt(t

2)) = 0. Therefore, we may simply pass the derivative
into the integral to obtain fχ◦

2m
(t). Hence,

fχ◦
2m

(t) =
2√
2π

∫ t

0
fχ2m

(gt(s
2))∂t(gt(s

2))e−s
2/2ds.

Here we use fχ2m
(·) to denote the probability density function of χ2m.

Note that

gt(s
2) =

√
1

2

(
t4

s2
− s2

)
.

To complete, we simply evaluate the derivative and finally substitute
the expression for fχ2m

into the integral.
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