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OUTLINE

1. Demonstrate the applicability of random matrix
theory to free-space optical communications.

2. Use simulations to find out what assumptions
are required to converge to RMT results with
reasonably sized (i.e. not infinite) systems.

3. Use random matrix theory to find the lower limit
on the achievable bit error rate in the presence
of atmospheric turbulence.
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Atmospheric Turbulence

Significant for optical communication because of small
wavelength of laser light (1.5 pum)

- Changes the phase front of the beam

- Can cause deep fades in received power due to destructive
interference at receiver

Random fluctuations of index of refraction described by
Kolmogorov model



Spatial Diversity via Sparse Apertures
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Spatial Diversity via Sparse Apertures
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We can improve performance with wavefront predistortion.



OUTLINE

1. Demonstrate the applicability of random matrix
theory to free-space optical communications.

2. Use simulations to find out what assumptions
are required to converge to RMT results with
reasonably sized (i.e. not infinite) systems.

3. Use random matrix theory to find the lower limit

on the achievable bit error rate in the presence
of atmospheric turbulence.



Channel Formulation
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N - number of transmit apertures plane daacos

nr - number of receive apertures —

2 : amplitude and phase of the output field at the transmit aperture

y . amplitude and phase of the received field at each receive aperture

H : channel transfer matrix, with element h,, representing the diffraction
gain of the field from transmit aperture x to receive aperture y

SNR : signal-to-noise ratio for a single aperture transmitter to a single
aperture receiver with no turbulence

w : circularly symmetric complex AGWN, unit variance

Image source: Puryear, 2011
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Channel Formulation
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Channel Formulation
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Channel Formulation

* N, xN,i.i.d. entries of H

— Independent: Transmit and receive apertures are
separated by atmospheric correlation length.

— Identical: Path distance is much greater than
distance between apertures.

— Time-invariant: bit period is much less than
atmospheric correlation time.



Channel Formulation
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U : The ' column wu; is the ¢'* output spatial eigenmode.

V : The i*" column v; is the " input spatial eigenmode.
I' : Diagonal matrix ot singular values v of H.

v? is the diffraction gain of the ' spatial eigenmode.



OUTLINE

1. Demonstrate the applicability of random matrix
theory to free-space optical communications.

2. Use simulations to find out what assumptions
are required to converge to RMT results with
reasonably sized (i.e. not infinite) systems.

3. Use random matrix theory to find the lower limit

on the achievable bit error rate in the presence
of atmospheric turbulence.



Randomly Generate
Channel Transfer Matrix

function generateH(N_rx N_tx,1.,C_n2)
##Log-amplitude fluctuations
varX = minimum([0.124*k™(7/6)*C_n2*1."(11/6), 0.5]);
mX = -varX;
Z = randn(N_rx,N_tx);
X = e (ZL*sqrt(varX) + mX);

H#H#Log-phase fluctuations
phi = rand(N_rx,N_tx) * 2 * pt;

H##Channel Transfer Matrix
H = X *e.”(im*phi);

end



Compare Squared Singular Values to
Marcenko-Pastur Distribution

function diffGain(N_rx, N_tx, I, C_n2)

H = generate H(N_rx,N_tx,[..C_n2);

A=H*H'/N_rx; -
gamma = eigvals(A);

end

Beta = N_tx/N_rx;

function M_P(x, Beta)
if x==0
##{ = maximum([0; 1 - Beta]);
£=0;
else
numl = maximum([0;(x-(1-
sqre(Beta)) "2)]);
num?2 = maximum(|0;
(1+sqrt(Beta))"2-x)]);
f = sqrt(num1*num?2)./
(2*pr*x*Beta);
end
end
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OUTLINE

1. Demonstrate the applicability of random matrix
theory to free-space optical communications.

2. Use simulations to find out what assumptions
are required to converge to RMT results with
reasonably sized (i.e. not infinite) systems.

3. Use random matrix theory to find the lower
limit on the achievable bit error rate in the
presence of atmospheric turbulence.



Minimum Average Bit Error Rate

Assume we know the instantaneous atmospheric state.
Then we minimize the BPSK bit error rate by choosing:

T =a I’max
a={—11}
A sufficient detection statistic is:

¢ = Re{il,. i/}

The largest square singular value converges to:

Tiax = (1 ++/B)°
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Convergence of Bit Error Rate
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Convergence of Bit Error Rate
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