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1 Introduction

In the “spike model” for random matrices, it is well known that the top eigenvalue of a GOE matrix is
affected by a planted ‘spike’ if and only if the size of the spike exceeds a certain threshold. This leaves open
the question of what happens when the spike is below the threshold — is there another way (other than the
top eigenvalue) to detect the spike (e.g. by looking at other eigenvalues or gaps between eigenvalues)? In
this report I will give a simple proof that it is in fact statistically impossible to detect the spike below the
threshold. This is based on joint research with Will Perry.

2 Spike Model

A “spiked Wigner matrix” takes the form Y = \za T + ﬁW where z is a unit vector in R™ and W is an
n x n GOE matrix (normalized such that the off-diagonals have variance 1). Here A is a parameter that
controls the size of the spike. It is known that the top eigenvalue undergoes a phase transition at the critical
value A = 1, namely:

Theorem 2.1 ([FP06]). Let Y = Azz ' + ﬁW as above.
o If A <1 then \pax(Y) = 2 as n — oo,
e and if A >1 then)\max(Y)—>)\+§ > 2 asn — 00.

Recall that )\max(ﬁw) — 2, so this means that the spike affects the top eigenvalue if and only if A > 1.
Our main result will show that when X\ < 1, it is statistically impossible to detect the spike. (For simplicity

we do not consider the boundary case A = 1.)

3 Contiguity

The proof of our main result will rely on the notion of contiguity (see [Jan95]), which was introduced by Le
Cam as the asymptotic analogue of absolute continuity. We consider two sequences of probability measures
{P,} and {Q,} such that for each n, P,, and Q,, are defined on the same probability space. In our case, we
will be interested in the following two distributions over n x n matrices Y,,:

e P, Y, =Xz + %W where z ~ D,
e Qu: Y, = ﬁw

In other words: under P,,, Y,, is a spiked Wigner matrix where the spike is drawn from some prior D,,; and
under Q,, Y, is just an (un-spiked) Wigner matrix. We will take D,, to be the uniform prior over unit
vectors in R™, but our techniques also extend to other priors (e.g. vectors with entries {+1}). Now we are
ready to define contiguity.



Definition 3.1. We say {P,} is contiguous to {Q,} if whenever Q,(4,) — 0 as n — oo for a sequence of
events {A,}, we also have P,,(A4,) — 0. We denote this by P, <Qj,.

Our main result shows contiguity for the specific {P,}, {Q,} defined above.

Theorem 3.2 (main). For {P,} and {Q,} defined above (spiked Wigner matrices), if A < 1 then we have
P, <Q,.

The reason we are interested in contiguity is because of its implications for non-distinguishability of
the two distributions in the following sense. Suppose we generate a random value Y, as follows: with
probability %, Y, is sampled from P,,, and with probability %, Y,, is sampled from Q,. Also suppose we
have a “distinguisher” A,, that takes Y, and tries to guess which of the two distributions it came from.
An immediate consequence of contiguity is that if P, < @Q,, then there is no distinguisher A,, that guesses
correctly with probability 1 — o(1) as n — oo. To prove this, consider the event A, that A,, guesses “P,”.
If the distinguisher succeeds with probability 1 — o(1) then we must have Q,,(A4,) — 0 (i.e. if ¥;, comes from
Qy, then A, should not guess “P,,”). But by contiguity this implies P,,(A,,) — 0, which is a contradiction.
This gives the following corollary.

Corollary 3.3. For {P,} and {Q,} defined above (spiked Wigner matrices), if A < 1 then no distinguisher
succeeds with probability 1 — o(1) as n — oo.

In other words, there is no test that can reliably detect the presence of the spike (when A < 1). Note that this
only rules out distinguishers that succeed with high probability 1 —o(1). There could still be a distinguisher
that succeeds with, say, some constant probability larger than %

4 Proof of Main Result

In this section we prove our main result (Theorem 3.2): if A < 1 then P,, <@Q,,. A related result can be found
in [KXZ16]. One advantage of our proof is that it is very simple.

We start with a crucial lemma that gives us a concrete way to prove contiguity: if we can show that a
particular second moment is finite, then contiguity follows.

Lemma 4.1. Let {P,} and {Q,} be two sequences of probability measures. If the second moment
( P, ) ?
dQ,

In our case, where P,, and Q,, are continuous distributions supported everywhere, say with densities p, and

2
n, the second moment is just Ey g, {(m) } ‘

Eq,

remains bounded as n — oo then P, <Q,.

Proof. Let {A,,} be a sequence of events such that Q,(A4,) — 0 as n — oco. Using Cauchy-Schwarz,

rian = = [ ()0 [ () s0- [ o

dP,, \ 2

The first factor is bounded and the second goes to 0, so P, (A,) — 0. O




4.1 Proof of Theorem 3.2

dPy

We can now prove our main theorem by computing the second moment Eg, [( 10

2
) ] for our particular
choice of P,, and Q,, (spiked Wigner matrices).

ap,  Eomp, oxp (=5 o (Y = Awia))? = § 30, (Y — Aad)?)

4Qn exp (*% PP R DI }/3)
=E exp | n E N, — n E Na2a? + n E Y2 — n E A2zt
z~D,, - 1glidyg 2 - i 2 : (AR 4 : i
1<J 1<J 7 7

= Exw'Dn exp | n Z )\Yijxix]— + g Z )\Ylﬂt? — g Z )\Qxijz

1<j i %7

=E;p, exp nz XYz + g Z AY2? — %)\2 since ||z =1

i<j i

dP,, 2 nA? n n
(d(@n) = exXp (—2> Ez,a:’w’D" exXp | n Z /\Y;jLL'Z'!L'j + 5 Z )\Y“x? + nz )\}/ZJ!TQLL'; + 5 Z AY;Z(:E;)Q

1<j i 1<j

where z,z’ are drawn independently from D,,.
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use the Gaussian moment-generating function:
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For large n, the distribution of (x,e;) approaches N'(0,1/n) and so the distribution of (x,e;)? approaches
% X3. Using the chi-squared moment-generating function:

)\2 -1/2
= 1—2.7
(1-25)

1
V1= )2

which is bounded provided A < 1. Our main result now follows from Lemma 4.
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