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1 Introduction

In the “spike model” for random matrices, it is well known that the top eigenvalue of a GOE matrix is
affected by a planted ‘spike’ if and only if the size of the spike exceeds a certain threshold. This leaves open
the question of what happens when the spike is below the threshold – is there another way (other than the
top eigenvalue) to detect the spike (e.g. by looking at other eigenvalues or gaps between eigenvalues)? In
this report I will give a simple proof that it is in fact statistically impossible to detect the spike below the
threshold. This is based on joint research with Will Perry.

2 Spike Model

A “spiked Wigner matrix” takes the form Y = λxx> + 1√
n
W where x is a unit vector in Rn and W is an

n × n GOE matrix (normalized such that the off-diagonals have variance 1). Here λ is a parameter that
controls the size of the spike. It is known that the top eigenvalue undergoes a phase transition at the critical
value λ = 1, namely:

Theorem 2.1 ([FP06]). Let Y = λxx> + 1√
n
W as above.

• If λ ≤ 1 then λmax(Y )→ 2 as n→∞,

• and if λ > 1 then λmax(Y )→ λ+ 1
λ > 2 as n→∞.

Recall that λmax( 1√
n
W ) → 2, so this means that the spike affects the top eigenvalue if and only if λ > 1.

Our main result will show that when λ < 1, it is statistically impossible to detect the spike. (For simplicity
we do not consider the boundary case λ = 1.)

3 Contiguity

The proof of our main result will rely on the notion of contiguity (see [Jan95]), which was introduced by Le
Cam as the asymptotic analogue of absolute continuity. We consider two sequences of probability measures
{Pn} and {Qn} such that for each n, Pn and Qn are defined on the same probability space. In our case, we
will be interested in the following two distributions over n× n matrices Yn:

• Pn: Yn = λxx> + 1√
n
W where x ∼ Dn

• Qn: Yn = 1√
n
W .

In other words: under Pn, Yn is a spiked Wigner matrix where the spike is drawn from some prior Dn; and
under Qn, Yn is just an (un-spiked) Wigner matrix. We will take Dn to be the uniform prior over unit
vectors in Rn, but our techniques also extend to other priors (e.g. vectors with entries {±1}). Now we are
ready to define contiguity.
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Definition 3.1. We say {Pn} is contiguous to {Qn} if whenever Qn(An) → 0 as n → ∞ for a sequence of
events {An}, we also have Pn(An)→ 0. We denote this by Pn /Qn.

Our main result shows contiguity for the specific {Pn}, {Qn} defined above.

Theorem 3.2 (main). For {Pn} and {Qn} defined above (spiked Wigner matrices), if λ < 1 then we have
Pn /Qn.

The reason we are interested in contiguity is because of its implications for non-distinguishability of
the two distributions in the following sense. Suppose we generate a random value Yn as follows: with
probability 1

2 , Yn is sampled from Pn, and with probability 1
2 , Yn is sampled from Qn. Also suppose we

have a “distinguisher” An that takes Yn and tries to guess which of the two distributions it came from.
An immediate consequence of contiguity is that if Pn / Qn then there is no distinguisher An that guesses
correctly with probability 1 − o(1) as n → ∞. To prove this, consider the event An that An guesses “Pn”.
If the distinguisher succeeds with probability 1− o(1) then we must have Qn(An)→ 0 (i.e. if Yn comes from
Qn then An should not guess “Pn”). But by contiguity this implies Pn(An) → 0, which is a contradiction.
This gives the following corollary.

Corollary 3.3. For {Pn} and {Qn} defined above (spiked Wigner matrices), if λ < 1 then no distinguisher
succeeds with probability 1− o(1) as n→∞.

In other words, there is no test that can reliably detect the presence of the spike (when λ < 1). Note that this
only rules out distinguishers that succeed with high probability 1− o(1). There could still be a distinguisher
that succeeds with, say, some constant probability larger than 1

2 .

4 Proof of Main Result

In this section we prove our main result (Theorem 3.2): if λ < 1 then Pn /Qn. A related result can be found
in [KXZ16]. One advantage of our proof is that it is very simple.

We start with a crucial lemma that gives us a concrete way to prove contiguity: if we can show that a
particular second moment is finite, then contiguity follows.

Lemma 4.1. Let {Pn} and {Qn} be two sequences of probability measures. If the second moment

EQn

[(
dPn
dQn

)2
]

remains bounded as n→∞ then Pn /Qn.

In our case, where Pn and Qn are continuous distributions supported everywhere, say with densities pn and

qn, the second moment is just EY∼Qn

[(
pn(Y )
qn(Y )

)2]
.

Proof. Let {An} be a sequence of events such that Qn(An)→ 0 as n→∞. Using Cauchy-Schwarz,

Pn(An) =

∫
An

dPn =

∫
An

(
dPn
dQn

)
dQn ≤

√∫
An

(
dPn
dQn

)2

dQ ·

√∫
An

dQn

≤

√
EQn

(
dPn
dQn

)2

·
√

Qn(An).

The first factor is bounded and the second goes to 0, so Pn(An)→ 0.
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4.1 Proof of Theorem 3.2

We can now prove our main theorem by computing the second moment EQn

[(
dPn

dQn

)2]
for our particular

choice of Pn and Qn (spiked Wigner matrices).

dPn
dQn

=
Ex∼Dn

exp
(
−n2

∑
i<j(Yij − λxixj)2 −

n
4

∑
i(Yii − λx2i )2

)
exp

(
−n2

∑
i<j Y

2
ij − n

4

∑
i Y

2
ii

)
= Ex∼Dn

exp

n∑
i<j

λYijxixj −
n

2

∑
i<j

λ2x2ix
2
j +

n

2

∑
i

λYiix
2
i −

n

4

∑
i

λ2x4i


= Ex∼Dn

exp

n∑
i<j

λYijxixj +
n

2

∑
i

λYiix
2
i −

n

4

∑
i,j

λ2x2ix
2
j


= Ex∼Dn

exp

n∑
i<j

λYijxixj +
n

2

∑
i

λYiix
2
i −

n

4
λ2

 since ‖x‖ = 1

(
dPn
dQn

)2

= exp

(
−nλ

2

2

)
Ex,x′∼Dn

exp

n∑
i<j

λYijxixj +
n

2

∑
i

λYiix
2
i + n

∑
i<j

λYijx
′
ix
′
j +

n

2

∑
i

λYii(x
′
i)

2


where x, x′ are drawn independently from Dn.

EY∼Qn

(
dPn
dQn

)2

= exp

(
−nλ

2

2

)
Ex,x′∼Dn

EY∼Qn
exp

n∑
i<j

λYij(xixj + x′ix
′
j) +

n

2

∑
i

λYii(x
2
i + (x′i)

2)


use the Gaussian moment-generating function:

= exp

(
−nλ

2

2

)
Ex,x′∼Dn

exp

∑
i<j

nλ2

2
(xixj + x′ix

′
j)

2 +
∑
i

nλ2

4
(x2i + (x′i)

2)2


= exp

(
−nλ

2

2

)
Ex,x′∼Dn

exp

nλ2
4

∑
i,j

(xixj + x′ix
′
j)

2


= exp

(
−nλ

2

2

)
Ex,x′∼Dn exp

nλ2
4

∑
i,j

(x2ix
2
j + 2xix

′
ixjx

′
j + (x′i)

2(x′j)
2)


= exp

(
−nλ

2

2

)
Ex,x′∼Dn

exp

(
nλ2

2
(1 + 〈x, x′〉2)

)
since ‖x‖ = 1

= Ex,x′∼Dn exp

(
nλ2

2
〈x, x′〉2

)
= Ex∼Dn exp

(
nλ2

2
〈x, e1〉2

)
by symmetry (here e1 = (1, 0, 0, . . .))
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For large n, the distribution of 〈x, e1〉 approaches N (0, 1/n) and so the distribution of 〈x, e1〉2 approaches
1
nχ

2
1. Using the chi-squared moment-generating function:

=

(
1− 2 · λ

2

2

)−1/2
=

1√
1− λ2

which is bounded provided λ < 1. Our main result now follows from Lemma 4.
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