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Abstract

We present an exposition on the angular synchronization problem.
We use a phase transition result of the eigenvalues of spiked covariance
matrices from random matrix theory to present a solution to this problem.
Then, we present further directions one can take, including using the
theory of semidefinite programming and approximate message passing.

1 Introduction

The angular synchronization problem is to recover n angles θ1, . . . , θn from m ≤(
n
2

)
noisy measurements δij of their offsets θi− θj . From a learning perspective,

we expect the number of measurements m to be much less than the set of
all measurements. By noisy, we mean that with probability p, we receive the
actual offset, and with probability 1− p, we receive a measurement uniform on
the interval [0, 2π). If we let G = (V,E) be the graph on n vertices with edge set
equal to the offset measurements, we note that if G is disconnected, we cannot
hope to recover the angles. And even if G were connected, we can only recover
the angles up to some global additive constant.

Before the work of [5], the most common approaches to solving synchroniza-
tion problems was least squares or using a maximum likelihood estimator. But
as we will explain in detail later, these do not work for our particular problems.
The author introduces a new approach using spectral methods. In particular,
he pulls from the theory of random matrices.

Consider a Wigner matrix M , with entries having second moment equal to 1.
Then we expect its eigenvalues to follow the semicircle law in (−2

√
n, 2
√
n) [6].

We can ask the following question: if we add a rank one spike to M , when will
its eigenvalue distribution no longer follow this semicircle law? In particular,
when does λ

nzz
∗ + 1√

n
M have an eigenvalue outside (−2, 2)? The answer turns

out to be whenever λ > 1 [2] [3]. From this result, we can deduce a solution to
the angular synchronization problem.

It turns out that this theory can be applied to other synchronization prob-
lems. Here, we can view the real numbers modulo 2π as a group G. Then we
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could ask the question: given a general group G and offset measurements gig
−1
j ,

how can we recover the group G? Whenever this group has a complex or real
representation, we can construct a Hermitian matrix whose (i, j) entry is the
matrix representation of the measurement, if such a measurement was given.
This question when G is SO(3) arises naturally in cryo-electron microscopy,
NMR spectroscopy, and localization of sensor networks.

Our exposition will first briefly discuss the random matrix theory behind
the aforementioned phase transition in Section 2. Then, we will provide the
solution in [5] to the angular synchronization problem in Section 3. Finally, we
will conclude in Section 4 with applications and further directions.

2 Spiked Covariance Matrices

In our exposition, we will discuss [2] and only note that their work is extended
in [3]. First, we state the main result from that paper in the form we need. We
note that the paper does not assume a square matrix and so we are looking at
eigenvalues of AAT .

Theorem 2.1. Let λ1 be the largest eigenvalue of the sample covariance matrix
constructed from M i.i.d. complex Gaussian sample vectors of N variables.
Let `1, . . . , `N denote the eigenvalues of the covariance matrix of the samples.
Suppose that for a fixed r, `r+1 = · · · = `N = 1. As M,N → ∞, with M/N =
γ2, the following holds:

1. When for some 0 ≤ k ≤ r, `1 = · · · = `k = 1 + γ−1, and `k+1, . . . `r are in
a compact subset of (0, 1 + γ−1), λ1 → (1 + γ−1)2 in probability.

2. When for some 1 ≤ k ≤ r, `1 = · · · = `k > 1 + γ−1 and `k+1, . . . `r are in

a compact subset of (0, `1), λ1 → `1(1 + γ−1

`1−1 ) in probability.

We will not provide an in-depth proof here, but will instead only outline the
ideas. We start by writing the distribution function of the largest eigenvalue λ1

as a Fredholm determinant.

P (λ1 ≤ ξ) = det(1−KM,N |(ξ,∞)),

where KM,N |(ξ,∞) is the operator with kernel

KM,N (x, y) =
M

(2πi)2

∫
Γ

dz

∫
Σ

dwe−xM(z−q)+yM(w−q) 1

w − z
(
z

w
)M

N∏
k=1

πk − w
πk − z

Here, Γ is any simple contour enclosing π1, . . . , πN lying right of q, and Σ is any
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simple contour enclosing 0. Now we split this up as

KM,N (x, y) =

∫ ∞
0

H(x+ a)J(y + a)da

H(x+ a) =
M

2π

∫
Γ

e−(x+a)M(z−q)zM
N∏
k=1

1

πk − z
dz

J(y + a) =
M

2π

∫
Σ

e(y+a)M(w−q)w−M
N∏
k=1

(πk − w)dw

2.1 Basic Ideas for Analysis

We will only give the ideas for the first part of the theorem, since it will suffice
to display the kind of arguments used. Recall that π−1

i for i up to k is 1 + γ−1,

and up to r is in some compact subset. Now if we write ξ as µ + νξ′

Mα some
manipulations show that we need to evaluate

H(u) =
νM1−α

2π

∫
Γ

e−νM
1−αu(z−q)e−Mµ(z−q) zM

(1− z)N−r
r∏
`=1

1

π` − z
dz

J(v) =
νM1−α

2π

∫
Σ

eνM
1−αv(w−q)eMµ(w−q) (1− w)N−r

wM

r∏
`=1

(π` − w)dw

We now take α = 2/3, µ =

(
1 + γ

γ

)2

, ν =
(1 + γ)4/3

γ
. The following analysis

will make it clear why these were chosen so.
The term we care about is eMf(z) (both in this case and the case where some

eigenvalues are larger), where

f(z) = −µ(z − q) + log(z)− 1

γ2
log(1− z).

To compute the critical point, we need

f ′(z) = −µ+
1

z
− 1

γ2(z − 1)
.

We see that our choice of µ creates a double root at z0 = γ
γ+1 . Computing more

derivatives, we see that

f (3)(z0) = 2ν3 > 0,

which explains the choice of ν. This analysis implies that the steepest-descent
curve of f comes to z0 wiht angle ±π/3 to the real axis. The idea, then, is to
move Γ to approach z0 with such an angle so that the main contribution to the
integral comes from a contour near z0. The new contours look like
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Figure 1: New Contours

To sum up, for H, we now have

H(u) ∼ νM1/3

2πg(z0)

∫
Γ

e−νM
1/3u(z−q)eM(f(z0)+

f(3)(z0)
3! (z−z0)3) 1

(z0 − z)k
dz

with

g(z) =
1

(1− z)r
r∏

k+1

(π` − z).

Thus, we expect

H(u) ∼ (−νM1/3)keMf(z0)

2πg(z0)
e−νM

1/3u(z0−q)
∫

Γ∞

e−ua+a3/3a−kda

A similar argument gives a similar expression for J . Then we can see that this
converges, after multiplying by a constant factor, to

H∞(u) =
e−εu

2π

∫
Γ∞

e−ua+a3/3a−kda

What this gives us is that

P

(
(λ1 − (1 + γ−1)2)

γ

(1 + γ)4/3
M2/3 ≤ x

)
converges to the Fredholm determinant of an operator with kernel∫ ∞

0

H∞(x+ u+ y)J∞(x+ v + y)dy

It turns out this last expression can be written as an Airy kernel, but our
purposes, it only matters that this exists.

This is very much just a skeleton outline. Refer to [2] for details. But the
idea is that we construct a contour integral and want to use a steepest-descent
argument. So we plug in values that allow for this, and the threshold is at our
desired values.

Also, we remind the reader that the work of [3] extends this to Wigner
matrices. With this in mind, we move to applying these results to angular
synchronization.
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3 Angular Synchronization

First, we formally define the angular synchronization problem.

Problem 3.1. Suppose there are n unknown angles θ1, . . . , θn. We are given m
measurements δij that are either equal to θi − θj or are uniformly chosen from
[0, 2π). We wish to produce an algorithm that with high probability recovers θi.

Note that typically, the good measurements should not be exactly θi − θj
but rather normally distributed around the difference with some variance σ2. It
is easy to see that the argument for proof of correctness still holds in this case,
though.

We briefly mention some standard approaches that don’t work for this prob-
lem.

3.1 Previous Approaches

The first method we mention is least squares. In applications such as time
synchronization and surface resconstruction in computer vision, least squares
is a common approach when one needs a gloally consistent integration method
to not accumulate too much error. This method does well when the offset
measurements have a small Gaussian additive error, and they can be efficiently
computed and analyzed in terms of graph Laplacians.

To use this, we write an overdetermined system of linear equations

θi − θj = δij (mod 2π).

Writing zi = eiθi , this is

zi − eiδijzj = 0.

To avoid the trivial solution, we force z1 = 1, which we can do since we can
only recover up to additive constant. Then, we look for a solution with minimal
`2-norm residual. However, in our model, we expect the error to be dominated
by the outlier equations, and so least squares will not work well if the number
of bad equations is large.

The next idea to try is maximum likelihood. Here, we wish to find the set of
angles that satisfies as many equations as possible. Define the self consistency
error as the number of equations not satisfied.

SCE(θ1, . . . , θn) = #{(i, j) ∈ E : θi − θj 6= δij (mod 2π)}.

In most situations, due to discretization, even good measurements will contain
some small error, so instead we could use

SCEf (θ1, . . . , θn) =
∑

(i,j)∈E

f(θi − θj − δij),
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where f is a smooth periodic function with f(0) = 0 and f(θ) = 1 when |θ| is
larger than the discretization error. Minimizing SCEf turns out to be equivalent
to maximizing the log likelihood with a different probabilistic error model. The
problem, though, is that typically this is a non-convex prolem, and so is difficult
to carry out.

Hence, we use a new estimator from spectral theory.

3.2 The Eigenvector Method

First, we form the following n× n matrix H with entries

Hij =

{
eiδij if (i, j) ∈ E
0 else.

The idea behind the method is as follows. Consider the maximization problem

max
θ1,...,θn∈[0,2π)

n∑
i,j=1

e−iθiHije
iθj .

It’s easy to see that for the correct angles, good edges contribute 1, and so the
total contribution of good edges is mgood. The contributions from bad edges
are uniform on the unit circle, and so viewing this as a random walk, we get an
expected contribution of O(

√
mbad).

This maximization problem has the same problems as our maximum likeli-
hood estimator, which is that it is non convex. Thus, we must relax it to

max∑n
i=1 |zi|2=n

n∑
i,j=1

z∗iHijzj .

It’s easy to see that the solution to this is just the normalized top eigenvector
of H. Once we have a solution, we can take eiθi = zi

|zi| . This problem has an

efficient solution, since finding the top eigenvector is fast by the power iteration
method. Of course, we have to show that the relaxation gives a good solution
to the original problem.

3.3 Analysis in the Complete Graph Case

We will first provide an analysis of why our method works in the case that all(
n
2

)
measurements are given. Also, we assume that whether an edge is good or

bad is decided with probability p or 1−p. Thus, Hij is eiθi−iθj with probability
p and uniformly chosen at random from the circle with probability 1 − p. We
also let the diagonal entries of H be p.

Now, we can compute the expected value

EHij = peiθi−iθj
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so that

EH = npzz∗,

where z is our vector of true angles with entries zi = 1√
n
eiθi . Since we wish to

appeal to spiked covariance results, it is natural to write

H = npzz∗ +R,

where R is the matrix of the difference of H from its expectation, with entries

Rij =


0 if i = j

(1− p)ei(θi−θj) w.p. p

eiφ − pei(θi−θj) w.p.1− p
,

where φ is uniform in [0, 2π). We can compute the variance and see, then, that
R/
√
n(1− p2) has eigenvalues following the semicircle law in (−2, 2). Thus, we

can apply the results from the previous section to see that as long as

np >
√
n(1− p2),

the largest eigenvalue of H will be outside the support of the semicircle law. In
fact, we know that

λ1(H) ∼ N(µ, σ2)

µ =
np√

1− p2
+

√
1− p2

p

σ2 =
(n+ 1)p2 − 1

np2
(1− p2)

We need a little more than just that the eigenvalue pops out, though. In
particular, we also need a correlation between the largest eigenvector v1 and z.
To this end,

λ1(H)v1 = (npzz∗ +R)v1

⇒ λ1(H) = np| < z, v1 > |2 + v∗1Rv1

⇒ | < z, v1 > |2 ≥
λ1(H)− λ1(R)

np

We want this to be better than random, i.e. greater than 1
n . The threshold

probability, then, is pc = 1√
n

. It is straightforward from a Taylor expansion and

approximation that as np2 gets large, the correlation between z and v1 increases.

3.4 General Analysis

Now, we are ready to move to the general case, the idea being to generalize
the decomposition in the complete graph case. We separate our edge set into
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Egood and Ebad. Let A be the adjacency matrix for Egood, and suppose its
decomposition into eigenvectors is A =

∑n
i=1 λiψiψ

T
i .

Let Z be the diagonal matrix with entries Zii = eiθi , and B = ZAZ∗. It
has the same eigenvalues as A, and its eigenvectors are φi = Zψi. Moreover,
it’s easy to see that

Bij =

{
ei(θi−θj) if (i, j) ∈ Egood
0 else.

We decompose H = B +R where R now has entries

Rij =

{
eiδij if (i, j) ∈ Ebad
0 else.

In this case, the δij are uniformly chosen at random from [0, 2π). Now, the
Perron-Frobenius theorem states that the entries of ψ1 are all positive, and this
implies that φi

|φi| gives us the true angles as eiθi . Thus, what we need to show is

that the top eigenvector of H corresponds with that of B.
We turn to look at the matrix R. Suppose that there are mbad edges and

they were chosen at random from the edges not in Egood. Then R has 2mbad

entries, with an average of 2mbad/n per row. These entries have 0 mean and
variance 1. From [4], with probability 1,

lim sup
n→∞

√
n√

2mbad
≤ 2

so we can approximate

λ1(R) ≈ 2

√
2mbad√
n

Note, however, that B is not a rank one perturbation. Thus, what we need is
the spectral gap ∆good = λ1(A)− λ2(A) satisfies

∆good >

√
2mbad√
n

We have now shown that our algorithm recovers the angles with better accuracy
as n increases. We conclude with further directions and applications.

4 Further Directions and Applications

Looking back to our objective function, we see a very natural relation to semidef-
inite programming. In particular, our problem is trying to maximize the follow-
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ing SDP:

max
Θ∈Cn×n

trace(H∗Θ)

Θ � 0

Θii = 1 i = 1, . . . , n

rank(Θ) ≤ 1

In order to get this into the form of a usual SDP, we must relax the rank
constraint. The issue, then, is showing that the solution to the relaxed problem
gives the solution to the original problem. In fact, we have the following theorem
[1]:

Theorem 4.1. Consider M = zz∗ + σW , where W has N(0, 1) entries off the
diagonal. Then if σ = O(n1/4), the solution to the SDP relaxation is also a
solution to the original problem. That is, the rank of the solution is 1.

However, we expect the actual answer should be
√
n. In particular, we have

the following conjecture:

Conjecture 4.2. Let M be as aove. Then if σ = O(
√
n), the solution to the

SDP relaxation is rank 1.

Some progress has been made on this front, but we still don’t have a proof.
We can also ask about generalizing the synchronization problems. To do

this, view the real numbers modulo 2π as a group under addition. We can then
ask

Problem 4.3. Given a group G and n unknown elements g1, . . . , gn, suppose we
are given offset measurements in the form of gig

−1
j . Recover the group elements.

This has many applications, for example to Cryo-Electron Microscopy. Cryo-
EM is a technique used to determine the three-dimensional structure of biolog-
ical molecules. These molecules are frozen in a layer of ice and imaged with an
electron microscope, which gives a two-dimensional projection of the molecule.
Of course, we don’t know the orientation the molecule was at when we image.
There exists a mechanism by which looking at two projections provides some
information between their orientation. Thus, we can view this is as a synchro-
nization problem with G = SO(3). In general, spectral techniques can be used
when the group G is compact.

Recently, a new approach has been suggested using Approximate Message
Passing. This has not yet been written up and is still being worked on by Alex
Wein and Will Perry.
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