
18.338 report:
RMT and boson computers

John Napp

May 11, 2016

Abstract

In 2011, Aaronson and Arkhipov [1] proposed a simple model of quantum com-
putation based on the statistics of noninteracting bosons. Physically, this model of
computation could be realized as a linear optics experiment in which n photons are
sent through a linear-optical network consisting of phaseshifters and beamsplitters be-
fore arriving at m possible photodetectors. The output of the computer is simply how
many photons are measured at each photodetector, and is a sample from a probability
distribution DA which is a function of how the optical network is laid out. Aaronson
and Arkhipov prove that, assuming two very plausible conjectures about random ma-
trices, if a classical algorithm can approximately sample from DA, then there would be
consequences for computational complexity theory that are widely believed to not be
true. Hence, if the conjectures are true, this work provides strong evidence that quan-
tum computers can efficiently solve certain problems that classical computers cannot.
This report is mainly an exposition of the original paper.

1 Introduction

Randomness plays a central role in classical information theory, and it also appears in con-
texts of quantum information theory as well. And since the time evolution of quantum states
is encoded by unitary matrices, one can see that it’s not surprising that random matrix the-
ory appears in quantum information theory. In this report, I will give an exposition of one
particular instance in which random matrix theory appears in the context of quantum com-
puting and quantum complexity theory. Namely, I will consider a certain model of quantum
computing proposed by Aaronson and Arkhipov in 2011 [1] which is based on noninteracting
bosons. In practice, this type of computer could be realized as a linear optics experiment,
since photons are bosons. This model is interesting because despite its simplicity, one can
show that it is impossible for a classical computer to simulate a boson computer without
drastic consequences for complexity theory, assuming two very plausible conjectures from
random matrix theory.

The model is “simple” because such a boson computer would be much easier to build
than a universal quantum computer. Indeed, the boson computer’s operation simply consists

1

of sending photons through a linear-optical network of beamsplitters and phaseshifters, and
then measuring the number of photons in each mode at the end. It’s believed that such
a computer could not even do universal classical computation, let alone quantum compu-
tation. However, assuming the random matrix conjectures are true, [1] arguably provides
the strongest evidence to date that quantum computers possess capabilities beyond those of
probabilistic classical computers. For example, Shor’s algorithm [3] is an efficient quantum
algorithm for factoring, a problem not believed to be efficiently solvable classically. However,
few believe that the classical factoring algorithms we have cannot be improved, and it is not
even totally beyond reasonable doubt that a polynomial-time classical factoring algorithm
exists. In particular, we have sub-exponential-time classical algorithms for factoring, and
factoring is not believed to be NP-hard. In contrast, the Aaronson-Arkhipov result directly
shows that efficient simulation of boson computers would imply a drastic consequence for
complexity theory – namely, that P#P = BPPNP, which implies that the polynomial hierar-
chy collapses to the third level. This is not quite as drastic as P = NP, but in some sense is
not too far away. Now we state some definitions and the conjectures that this result relies
on. Note that z ∼ N (0, 1)C means that z is chosen over the complex Gaussian distribution
with E[z] = 0 and E[|z|2] = 1.

Problem 1.1 (|GPE|2±). Given as input a matrix X ∼ N (0, 1)n×nC of iid Gaussians, together
with error bounds ε, δ > 0, estimate |Per(X)|2 to within additive error ±ε·n!, with probability
at least 1− δ over X, in poly(n, 1/ε, 1/δ) time.

Problem 1.2 (GPE×). Given as input a matrix X ∼ N (0, 1)n×nC of iid Gaussians, together
with error bounds ε, δ > 0, estimate Per(X) to within ±ε · |Per(X)|, with probability at least
1− δ over X, in poly(n, 1/ε, 1/δ) time.

Conjecture 1.3 (Permanent-of-Gaussians Conjecture (PGC)). GPE× is #P-hard.

Conjecture 1.4 (Permanent Anti-Concentration Conjecture (PACC)). There exists a poly-
nomial p such that for all n and δ > 0,

Pr
X∼N (0,1)n×n

C

[
|Per(X)| <

√
n!

p(n, 1/δ)

]
< δ

Section 2 gives relevant background in quantum computing. Section 3 gives relevant
background in complexity theory. Section 4 outlines the central Aaronson-Arkhipov result.
Section 5 discusses the RMT conjectures in more detail.

2 Quantum computing preliminaries

We now give some essential quantum computing preliminaries. A state of a quantum com-
puter is described by a ray in a Hilbert space. A Hilbert space can be thought of as a
vector space over C with some additional properties. We will denote vectors by |ψ〉 (bra-ket
notation). A Hilbert space has an inner product which maps a pair of vectors 〈ψ|ϕ〉 to C,
and respects positivity, linearity, and skew symmetry:

2

• 〈ψ|ψ〉 > 0 for all |ψ〉 6= 0

• 〈ϕ| (a |ψ1〉+ b |ψ2〉) = a 〈ϕ|ψ1〉+ b 〈ϕ|ψ2〉

• 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗

where ∗ denotes complex conjugation. These are the only properties of a Hilbert space that
are relevant here. Since quantum states correspond to rays in the Hilbert space, the vectors
|ψ〉 and a |ψ〉 correspond to the same physical state, for any nonzero a ∈ C.

Observables correspond to Hermitian operators acting on the Hilbert space. Any Hermi-
tian operator A can be decomposed as A =

∑
n anPn where an are the eigenvalues of A and

Pn are the corresponding projectors. Let the system be in the normalized state |ψ〉 (that
is, 〈ψ|ψ〉 = 1). Then if the observable A is measured, the measurement outcome will be
an with probability 〈ψ|Pn |ψ〉, and the resulting post-measurement state after obtaining the
outcome an will be Pn |ψ〉.

Evolution of a quantum system corresponds to a unitary transformation U on the state:
|ψ〉 → U |ψ〉.

The general procedure for a quantum computation is as follows. First, prepare some
easy-to-prepare input state. For example, our initial state could be a row of spins with each
spin pointing either up or down: |↑ · · · ↑〉. Now, perform a series of quantum gates U1, . . . , Ut
on the initial state. Each quantum gate should be some easy-to-implement operation which
acts on only a small number of the spins. The state after the series of gates is given by
Ut · · ·U1 |↑ · · · ↑〉. Finally, perform a measurement on the final state in the computational
basis. That is, the projectors are the operators |↑ · · · ↓〉 〈↑ · · · ↓| for the possible sequences
↑ · · · ↓. Now, if our algorithm is good, the resulting state corresponds to the solution of the
problem we were trying to solve with high probability.

3 Complexity theory preliminaries

We now give some essential ingredients from complexity theory, assuming basic familiarity
with the subject. Recall that P is the class of languages decidable in time polynomially-
large in the input length by a deterministic Turing Machine (TM). Essentially, this is the
class of decision problems which can be solved efficiently by a deterministic algorithm. NP
essentially corresponds to the class of decision problems for which, if the answer is ‘yes’,
it can be efficiently verified that the answer is ‘yes’ given access to a proof, but it is not
necessarily possible to efficiently determine if the answer is ‘yes’ or ‘no’ without help from a
proof.

Another class we will use is BPP, which stands for Bounded-Error Probabilistic Polynomial-
Time. This is essentially just the probabilistic analog of P. It is the class of languages for
which there exists a probabilistic TM which decides the language with success probability
at least 2/3 on each input. Note that this 2/3 is arbitrary, as the success probability can
be boosted to a number exponentially close to 1 by running TM some constant number of
times and using a majority voting procedure to determine if the correct answer is 0 or 1.

3

We will also encounter the class #P.

Definition 3.1 (#P). A function f : {0, 1}∗ → N is in #P if there exists a polynomial
p : N→ N and a polynomial-time TM M such that for every x ∈ {0, 1}∗:

f(x) =
∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣
Essentially, #P is the counting version of NP. For example, an example of an NP problem

is to determine if there is a perfect matching in a bipartite graph. The #P version of this
question is to determine how many perfect matchings there are in a given bipartite graph.
In some sense, it is believed that #P is a much more powerful class than NP. A function
is #P-complete if it is in #P, and if every other function in #P can be reduced to it in
polynomial time. Valiant [7] famously proved that computing the permanent of a 0,1-matrix
is a #P-complete problem.

Theorem 3.2 (Valiant [7]). The following problem is #P-complete: given a matrix X ∈
{0, 1}n×n, compute Per(X).

We will need a variant of this result, proved by Aaronson-Arkhipov.

Theorem 3.3 (Aaronson-Arkhipov [1]). The following problem is #P-hard, for any g ∈
[1, poly(n)]: given a matrix X ∈ Rn×n, approximate Per(X)2 to within a multiplicative factor
of g.

We will need yet another classic result from complexity theory due to Stockmeyer.

Theorem 3.4 (Stockmeyer [4]). Given an efficiently-computable Boolean function f : {0, 1}n →
{0, 1}, let

p = Pr
x∈{0,1}n

[f(x) = 1] =
1

2n

∑
x∈{0,1}n

f(x).

Then for all g ≥ 1 + 1
poly(n)

, there exists a BPPNP machine that approximates p to within a
multiplicative factor of g.

The notation BPPNP denotes a BPP machine with access to an NP oracle, where an NP
oracle is essentially a black box that can decide membership in any language L ∈ NP in a
single computational step. Equivalently, one can think of the oracle as a black box which
takes as input a 3CNF formula and in a single computational step outputs 1 if the formula
is satisfiable and 0 if it is not satisfiable (recall that determining the satisfiability of 3CNF
formulas is an NP-complete problem). So, a BPPNP machine is a probabilistic TM with
access to an NP oracle, which runs in time polynomial in the length of the input and outputs
a correct answer with probability at least 2/3. Note that Theorem 3.4 can be interpreted
as saying that a BPPNP machine can estimate the probability of acceptance of any BPP
machine.

4

4 BosonSampling

We are now ready to define the computational model of the boson computer, following
[1]. The computer is built out of linear-optical elements. The particles involved in the
computation are photons, which are a type of boson. There are n particles in m possible
modes (a mode can simply be thought of as a place that a photon can be). We assume that
n ≤ m ≤ poly(n). Photons are never created or destroyed, and any mode can have any
nonnegative integer number of photons. (This feature is unique to bosons as compared to
fermions – by the Pauli exclusion principle there can be no more than one identical fermion
in the same state, but there can be an unlimited number of bosons in the same state). The
computational basis states of the computer can be written as |S〉 = |s1, . . . , sm〉 where si is
the number of photons in mode i. Further, S must satisfy S ∈ Φm,n where Φm,n is the set
of tuples S = (s1, . . . , sm) such that each si ≥ 0 and s1 + · · · + sm = n. A measurement
consists of counting how many photons there are in each mode (eg with a photodetector),
which projects the state onto a computational basis state.

The boson computer works as follows. It starts in the basis state |1n〉 ≡ |1, . . . , 1, 0, . . . , 0〉
where there is exactly one photon in modes 1 through n, and modes n+1 through m have no
photons. It then applies a unitary transformation by applying some sequence of phaseshifters
and beamsplitters. Finally, a projective measurement in the computational basis is performed
as described above.

Let U be the unitary matrix corresponding to this sequence of phaseshifters and beam-
splitters for the case of 1 photon. Note that in this case, there are m computational basis
states and so U is m×m. Define the matrix A to be the m× n matrix obtained by keeping
only the first n columns of U . Now, let S ∈ Φm,n, and define the matrix AS as follows. If
S = (s1, . . . , sm), take si copies of the i’th row of U for all i ∈ [m]. Hence, AS is an n × n
matrix. Now, if DA is the probability distribution corresponding to the outputs of the boson
computer upon measuring in the computational basis, we have

Pr
DA

[S] =
|Per(AS)|2

s1! · · · sm!
(1)

The derivation of this result is beyond the scope of this overview, but is essentially a
consequence of the statistics of identical bosons. See [1] for details.

4.1 Exact BosonSampling

The BosonSampling problem is to sample from DA, given A as input (note that A fully
specifies the distribution of the boson computer). We now give an outline of the proof of
how a BosonSampling oracle O would allow one to compute the square of an arbitrary Cn×Cn

permanent in BPPNP, but first we record a few ingredients which are necessary for the proof.
By BosonSampling oracle, we mean an oracle which takes a string r ∈ {0, 1}poly(n) and an
m× n matrix A specifying the boson computer whose distribution over r chosen uniformly
at random is equal to DA. Note that the oracle is a deterministic function of r and A
– repeatedly querying the oracle with the same values of r and A will result in the same

5

output. For the purposes of this report, the phrases “BosonSampling oracle” and “efficient
classical algorithm for sampling from the output distribution of a boson computer” can be
used interchangeably.

We also need the following lemma, also proved in the original BosonSampling paper:

Lemma 4.1 (Aaronson-Arkhipov [1]). Let X ∈ Cn×n. Then for all m ≥ 2n and ε ≤ 1/‖X‖,
there exists an m × m unitary matrix U which can be computed in polynomial time that
contains εX as a submatrix.

Given all of the requisite ingredients, the desired result follows fairly straightforwardly:

Theorem 4.2. For any BosonSampling oracle O, P#P ⊆ BPPNPO . [In other words, if there
exists an efficient classical algorithm for sampling from the output distribution of a boson
computer, then P#P ⊆ BPPNP.]

Proof. Given a matrix X ∈ Rn×n, we show how to approximate the squared permanent of X

in BPPNPO . By Theorem 3.3 this is a #P-hard task, and so the result follows. The strategy
is to embed X into a unitary matrix corresponding to a boson computer, so that the squared
permanent of X corresponds to the probability of the boson computer outputting |1n〉. Then
by Stockmeyer’s result, if one has an oracle for BosonSampling, then one can approximate
this probability in BPPNP and hence approximate the squared permanent of X.

More explicitly, let m ≡ 2n and ε ≡ 1/‖X‖. Let U be a m ×m unitary matrix whose
n×n upper-left submatrix Un,n is equal to εX. Such a U exists by Lemma 4.1. Let A be the
m × n submatrix of U corresponding to selecting the first n columns. Note that A can be
interpreted as a description of a boson computer. Let pA be the probability that the boson
computer outputs |1n〉. Now we have

pA = Pr
r

[O(A, r) = 1n] = |Per(Un,n)|2 = ε2n|Per(X)|2

The first equality is by definition of the BosonSampling oracle, the second follows from
Equation 1, and the third follows from the embedding of X into U . But by Theorem 3.3,

we can approximate pA in BPPNPO , and hence we can approximate |Per(X)|2 in the same.
But by Theorem 3.3 approximating this quantity is #P-complete, and so the desired result
follows.

This result does not imply that a boson computer can solve a #P-complete problem. In
particular, the permanent that one is trying to compute corresponds to a probability that is
exponentially small. Hence, one would need an exponential number of samples to get a good
estimate of it. This is why the deterministic nature of the BosonSampling oracle is crucial
for the above proof.

However, there is actually a problem in the above proof. Namely, the BosonSampling
oracle O is assumed to be able to exactly sample from the true distribution, DA. But this is
not a reasonable requirement for the BosonSampling oracle, because in reality there will be
at least a small amount of noise in the boson computer, so even the boson computer itself
cannot sample exactly from DA. Hence, we should allow the BosonSampling oracle to sample

6

from some distribution D′A that is close to DA in total variation distance: ‖D′A−DA‖ ≤ ε for
some small error bound ε. But unfortunately, the above proof completely breaks down when
we allow even a tiny amount of error in the distribution that the oracle samples from. This is
because the proof relies on estimating probabilities that are potentially exponentially small,
and therefore if the oracle is adversarial and could figure out where in A we embedded the
matrix whose permanent we want to estimate, it could concentrate its error on the particular
measurement whose probability corresponds to that permanent! In the next section we see
how this problem can be remedied with random matrices.

4.2 Approximate BosonSampling and RMT

We now move onto the much more challenging case of approximate BosonSampling. Specif-
ically, [1] shows that if one had a fast classical algorithm for approximate BosonSampling,
then a BPPNP machine would be able to solve the |GPE|2± problem. Note that assuming the

two conjectures stated in the introduction are true, this would imply that a BPPNP machine
could solve #P-hard problems, which is widely believed by complexity theorists to not be
the case. The high-level proof strategy is as follows. One has a matrix X drawn from the
distribution Gn×n, where Gn×n is the probability distribution over n × n complex matrices
whose entries are independent Gaussians with mean 0 and variance 1. One would like to
compute |Per(X)|2 to within additive error ±ε · n! with probability at least 1 − δ over X,
in poly(n, 1/ε, 1/δ) time. We can use a BPPNP machine to take X as input, and output a
matrix A ∈ Um,n, where m is a polynomial function of n, such that X appears as a random
n × n submatrix of A, and the distribution over A is Hm,n. Here, Um,n denotes the set of
m×n column-orthogonal complex matrices and Hm,n denotes the Haar measure over m×n
column-orthogonal matrices. Actually, the above procedure will fail with some small prob-
ability. But since the |GPE|2± problem allows failure on some small fraction of instances,
this is not a problem. From this point, one can use the approximate BosonSampling oracle
to approximate the permanent of the embedded matrix X to within the needed additive
error. Since A is distributed as Hm,n, even an ’adversarial’ oracle could not in general cause
a substantial amount of error in the estimation of the permanent of the embedded matrix.

We omit most of the proofs because many of them are quite lengthy and the point of
this report is to just give a taste of the BosonSampling problem (the original paper is about
100 pages). One RMT result that is needed concerns truncations of Haar-random unitaries.
Specifically, any m1/6 ×m1/6 submatrix of an m×m Haar-random unitary matrix is close,
in variation distance, to a matrix of iid Gaussians. Despite the fact that truncations of
Haar-random unitaries have appeared frequently in the RMT literature, this result was first
proved by Aaronson-Arkhipov. More formally, define Sm,n to be the distribution over n× n
matrices obtained by first drawing a unitary U from Hm,m, and then outputting

√
mUn,n,

where Un,n is defined to be the top n × n submatrix of U . So essentially, Sm,n is just the
distribution of n×n truncations of m×m Haar-unitaries, appropriately scaled up. Formally,

Theorem 4.3 ([1]). Let m ≥ n5

δ
log2 n

δ
, for any δ > 0. Then ‖Sm,n − Gn×n‖ = O(δ).

7

Proof Idea. The strategy is that they pick some value k, and show that for both distributions,
the probability of a matrix having its maximal eigenvalue λmax be larger than k is very small.
They also show that amongst matrices for which λmax < k, the distributions are very close.
The value of k is O(n2 log n

δ
).

Actually, they need a stronger variant of this result, which they go on to prove next.

Theorem 4.4 (Haar-Unitary Hiding Theorem [1]). For all X ∈ Cn×n and m ≥ n5

δ
log2 n

δ
,

pS(X) ≤ (1 +O(δ))pG(X)

where pS and pG are the probability density functions of Sm,n and Gn×n.

Furthermore, for any X ∈ Cn×n, one can efficiently calculate ζpS(X)/pG(X) where ζ is
a constant close to 1. This allows us to generate samples from pS(X) using samples from
pG(X). More formally, let px and qx be two distributions over some set, and suppose that
one can efficiently compute ζqx/px given x. Further, suppose that qx/px ≤ 1 + δ for all
x, and that |ζ − 1| ≤ δ. Now say we can generate samples from p, but we want samples
from q. To do this, generate some sample x from p. Now, compute ζqx/px, and accept with

probability ζqx/px
(1+δ)2

. One can check that conditioned on acceptance, the output distribution

is qx. Also, the probability that the algorithm rejects is O(δ). This procedure is known as
rejection sampling. These results lead to the Hiding Lemma, which informally says that given
X ∼ Gn×n, with high success probability a BPPNP machine can embed X as a submatrix
of a larger m × n matrix A, such that, conditioned on the algorithm being successful, the
distribution over A is the Haar measure over m× n column-orthogonal matrices Hm,n. The
formal statement is below, copied from the original paper.

Lemma 4.5 (Hiding Lemma ([1])). Let m ≥ n5

δ
log2 n

δ
for some δ > 0. Then there exists a

BPPNP algorithm A that takes as input a matrix X ∼ Gn×n, that “succeeds” with probability
1 − O(δ) over X, and that, conditioned on succeeding, samples a matrix A ∈ Um,n from a
probability distribution DX , such that the following properties hold:

i) X/
√
m occurs as a uniformly-random n × n submatrix of A ∼ DX , for every X such

that Pr[A(X) succeeds] > 0.

ii) The distribution over A ∈ Cm×n induced by drawing X ∼ Gn×n, running A(X), and
conditioning on A(X) succeeding is simply Hm,n.

Proof Idea. We have a sample X ∼ Gn×n that we would like to convert to a sample from
Sm,n. This can be accomplished by applying the rejection sampling procedure described
above. Hence, after doing the rejection sampling procedure, with only a small probability
of failure, we have produced a sample from Sm,n. Now we claim that a candidate for DX is
the distribution obtained by sampling from Hm,n, and then conditioning on the requirement
that X/

√
m appear as a submatrix. Clearly DX satisfies requirement (i) – X/

√
m appears

as a uniformly-random n× n submatrix by symmetry. To see that (ii) is satisfied, note that

8

since X is a sample from Sm,n, a truncation of a sample from Hm,n, we can equivalently
generate DX by embedding the submatrix into a random location of an m× n matrix, and
then randomly filling in the remaining entries up to the column-orthogonal constraint. From
this perspective, it is evident that (ii) is satisfied as well.

The reason why a sample from DX can be produced by a BPPNP machine given X ∼ Sm,n
is simple, but is beyond the scope of this report. (If you have a complexity theory background,
it is simply because the machine can efficiently generate a Haar-random sample Y ∼ Hm,n

and then postselect on Y containing X/
√
m as a submatrix. Since PostBPP ⊆ BPPNP, the

result follows.)

With the Hiding Lemma, one can prove the main result – that if there exists an efficient
classical algorithm for approximate BosonSampling, then |GPE|2± ∈ BPPNP.

Theorem 4.6 ([1]). Assume there is a deterministic classical algorithm that, for all ε > 0,
takes as input A ∈ Um,n and a string r ∈ {0, 1}p(n) where p is a polynomial, runs in time
poly(n, 1/ε), and outputs a tuple S ∈ Φm,n with distribution D′A over r such that ‖D′A−DA‖ <
ε in variation distance. Then |GPE|2± ∈ BPPNP.

Proof Idea. The proof is somewhat long, but the high level intuition for why this is true is
as follows. Recall in Theorem 4.2, we wanted to approximate the permanent of a matrix
X using a BPPNP machine, assuming we could exactly sample from the distribution of a
BosonSampling computer. To do so, we simply defined a boson computer A ∈ Um,n which had
X embedded in it. Then the (exponentially small) probability of the computer measuring
the state (1, . . . , 1, 0, . . . , 0) was proportional to the squared permanent of X. We could
estimate this probability using the BPPNP machine and the exact BosonSampling algorithm.

This fails in the approximate BosonSampling case because the approximate BosonSampling
algorithm could be ‘adversarial’ in the sense that if it could tell where we had embedded X in
A, it could concentrate the error on the probability corresponding to the squared permanent
of X!

Going back to the random matrix case, using a BPPNP machine and an efficient algorithm
for approximate BosonSampling, we can solve the |GPE|2± problem by first sampling a matrix
X ∼ Gn×n, and then use the Hiding Lemma to embed X in some matrix A ∈ Um,n, with
only a tiny failure probability. Note that the squared permanent of X corresponds to the
probability of a certain output of the boson computer corresponding to A. The key point
now is that, since A is distributed as the Haar-random distribution Hm,n, the approximate
BosonSampling algorithm has absolutely no way of knowing where X is embedded in A.
Essentially, X is smuggled into A. No matter what X is or where it is embedded in A, from
the perspective of the approximate BosonSampling algorithm, A always is distributed as the
Haar measure on column-orthogonal matrices. So even if the algorithm is ‘adversarial’, trying
its best to ruin the approximation of |Per(X)|2, one can prove that it is always possible to
approximate |Per(X)|2 efficiently, with only a small failure probability, up to additive error
ε · n!.

9

5 The PACC and PGC

We have seen that it is possible to solve the |GPE|2± problem with a BPPNP machine if there
exists an efficient classical algorithm for approximately sampling from the distribution of
outputs of a boson computer. Now, Conjecture 1.3 (the PGC) states that it is a #P-hard
problem to efficiently estimate the permanent of a random matrix X ∼ Gn×n with high
success probability up to some multiplicative error (the GPE× problem). Furthermore, it is
proved in the original paper that assuming Conjecture 1.4 (the PACC), one can “bridge the
gap” between the GPE× problem and the |GPE|2± problem. That is, if the PACC is true,
then if one can solve the |GPE|2± problem, one can solve the GPE× problem. Since the PGC
states that GPE× is #P-hard, then if the PGC and the PACC are true, then an approximate
BosonSampling oracle would allow a BPPNP machine to solve #P-hard problems. Specifically,
it would imply P#P = BPPNP, which would imply that the polynomial hierarchy collapses
to the third level. This is a drastic consequence for complexity theory – most believe that
the polynomial hierarchy does not collapse to the third level. Hence, assuming the PGC and
the PACC, this is among the strongest evidence we have that quantum computers can solve
problems which are intractable for classical computers. I now say just a few words about the
PGC and the PACC, following [1]. For a very detailed analysis of these conjectures, consult
the original paper.

5.1 PGC

A discussion of the hardness of Gaussian permanents is mostly beyond the scope of this
report, requiring more complexity theory than is appropriate here. But perhaps the greatest
reason to believe in the PGC is that an analogous version for finite fields is known to be
true. In particular, for all α ≥ 1/poly(n) and primes p > (3n/α)2, the following problem
is #P-hard: given a uniform random matrix M ∈ Fn×np , output Per(M) with probability at
least α over M .

The PGC can be viewed as an analogous statement involving complex numbers rather
than finite fields.

5.2 PACC

Recall the statement of the PACC: there exists a polynomial p such that for all n and δ > 0,

Pr
X∼N (0,1)n×n

C

[
|Per(X)| <

√
n!

p(n, 1/δ)

]
< δ

To understand this more intuitively, first note that the expected value of Per(X) is clearly
0. Also, it is not difficult to show that

E
X∼N (0,1)n×n

C

[|Per(X)|2] = n!

10

Figure 1: Distribution of |Per(X)| for X ∼ G7×7. 10,000 samples were taken. Note that√
7! ≈ 71.

Hence, the PACC is essentially claiming that the distribution of permanents is not too
close to 0 relative to the standard deviation. In other words, it is claiming that if X is an
n × n random matrix with iid Gaussian entries, then with probability at least 1 − 1

poly(n)
,

the permanent of X has magnitude at least
√
n!

poly(n)
for some polynomials. See Figure 1 for a

histogram of |Per(X)| for X ∼ G7×7.
There is a 2009 result by Tao and Vu that is similar in spirit:

Theorem 5.1 (Tao-Vu [6]). For all ε > 0 and sufficiently large n,

Pr
X∈{−1,1}n×n

[
|Per(X)| <

√
n!

nεn

]
<

1

n0.1

While suggestive, this result is not enough to prove the PACC.
Another piece of evidence in favor of the PACC is that, if you consider the determinant

instead of the permanent, then the conjecture is true, as proved in [1]. They are able to
prove the result in the determinant case by exactly computing its moments. This is possible
due to nice geometrical properties of the determinant which are not there for the permanent
case.

11

As another piece of evidence in favor of the PACC, they are able to prove the following
weaker version of the conjecture:

Theorem 5.2 (Weak Anti-Concentration of the Permanent [1]). For all α < 1,

Pr
X∼Gn×n

[
|Per(X)|2 ≥ α · n!

]
>

(1− α)2

n+ 1
.

Although this statement is weaker than the PACC, it at least tells us that there is a non-
negligible probability of |Per(X)| being sufficiently large relative to its standard deviation.
For example, one could imagine that perhaps almost all of the probability density is extremely
close to 0, and an exponentially small amount of the probability density lies far past 0, so
that the standard deviation is

√
n!. Theorem 5.2 tells us that this is not the case, which is

good news for the PACC.
The proof of Theorem 5.2 is a bit too long to include in this report, but the interested

reader should refer to page 78 of [1] (no physics or complexity theory is involved).
Yet another bit of evidence for the PACC is that it is supported by the numerics. For a

detailed study of the numerics and how they provide evidence for the PACC, see the original
paper [1].

References

[1] S. Aaronson and A. Arkhipov. The computational complexity of linear optics. In Pro-
ceedings of the 43rd ACM Symposium on Theory of Computing, pages 333–342, 2011.

[2] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with non-negative entries. J. ACM, 51(4):671–697, 2004.
Earlier version in STOC?2001.

[3] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM J. Comput., 26(5):1484?1509, 1997. Earlier version in
IEEE FOCS 1994. quant-ph/9508027.

[4] L. J. Stockmeyer. The complexity of approximate counting. In Proc. ACM STOC, pages
118–126, 1983.

[5] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991.

[6] T. Tao and V. Vu. On the permanent of random Bernoulli matrices. Advances in Math-
ematics, 220(3):657?669, 2009. arXiv:0804.2362.

[7] L. G. Valiant. The complexity of computing the permanent. Theoretical Comput. Sci.,
8(2):189–201, 1979.

12

