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Introduction
In the past few years, there has been growing interest in applying random matrix theory results to com-
munications and signal processing. This report discusses that work in the specific context of free-space
optical communications. Free-space optical (FSO) communication is an attractive medium for high data-
rate terrestrial communications; in addition to enabling potentially Gbps communications, FSO systems are
less expensive to deploy than fiber, relatively portable, and do not have the licensing requirements of radio
frequency (RF) communications. For point-to-point, line-of-sight communications requirements, FSO links
are an obvious solution.

A major disadvantage of these terrestrial links is the limiting impact of atmospheric turbulence, which
induces microscale fluctuations of temperature and index of refraction, causing phase distortion of the trans-
mitted optical waveform. The effects of turbulence can be mitigated by increasing the transmit power,
increasing the temporal diversity of the transmitted signal (e.g via bit interleaving), or increasing the spa-
tial diversity of the transmitted signal (e.g via a sparse aperture array design). It is this last method of
turbulence mitigation via spatial diversity that is discussed in this report.

The theoretical results in this report are proved in the 2009 paper “Optical Communication Through the
Turbulent Atmosphere with Transmitter and Receiver Diversity, Wavefront Control, and Coherent Detection”
by Puryear and Chan [1] and in Puryear’s 2011 PhD thesis of the same title [2]. My goal in this project
was to understand, summarize, and simulate the results developed in [1] and [2], in order to answer the
question: how does random matrix theory help us understand the performance bounds of a free-space optical
communications link in atmospheric turbulence?

Channel Setup
To mitigate atmospheric turbulence, we can employ spatial diversity via a sparse aperture system architec-
ture, illustrated in Figure 1. The sparse aperture system as described in [1] is comprised of an array of ntx
apertures in the transmit plane ρ transmitting a signal to an array of nrx detectors in the receive plane. The
power from a single coherent laser source is divided via an optical power splitter among the ntx transmitters.
This optical power splitter controls the amplitude of the optical wave emitted by each transmitter. The
phase of each wave is adjusted by a phase modulator connected to each aperture. The amplitude and phase
are assumed constant over each aperture. The receive plane ρ′ contains an array of nrx coherent detectors.
As the light from the transmit plane propagates through space to the receive plane, the scalar waves from
each aperture interfere constructively and destructively to produce the Fraunhofer far-field radiation pattern
at the receive plane. This received field is detected and processed to generate a output statistic for the
transmission. We can model the channel as

~y =

√
SNR

nrx
H~x+ ~w

The vector ~x contains the amplitude and phase of the output field at each transmit aperture, and ~y the
amplitude and phase of the received field at each receive aperture.
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H is the channel transfer matrix, with element hmn representing the diffraction gain of the field from
transmit aperture m to receive aperture n. SNR is signal-to-noise ratio for a single aperture transmitter to a
single aperture receiver with no turbulence, and ~w is circularly symmetric complex additive white Gaussian
noise with unit variance.

Figure 1: Light from a single laser source is divided by a variable optical power splitter and coupled into an
array of apertures, each modulated by an independent phase modulator.

Each element hmn of the matrix H represents the change in phase of the field from transmit aperture m
to receive aperture n. Then in the noiseless case, the nth element of ~y consists of the sum of the phases of the
fields transmitted from each aperture. This sum represents the interference. In the absence of turbulence,
the direct path gain from transmitter m to receiver n is:

hmn = ejk
|ρ′n−ρm|

2

2L ejkL+j
π
2

L is the distance between the transmit and receive planes ρ and ρ′. k is the wavenumber, 2π/λ, where
we take λ = 10−6.

As in [2], we use the Rytov approximation to account for the effects of turbulence by multiplying each
element of H with a turbulence fading factor:

eχ(ρ
′
n,ρm)+jφ(ρ′n,ρm)

where
χ(ρ′n, ρm) ∼ N (mχ, σ

2
χ)

φ(ρ′n, ρm) ∼ N (mφ, σ
2
φ)

This is both an amplitude and phase multiplier. Because energy must be conserved, E
[
eχ2 = 1

]
, which

means that mχ = −σ2
χ. Additionally, if σ2

φ � 2π, then φ(ρ′n, ρm) ∼ Unif [0, 2π]. This means that:

hmn = eχ(ρ
′
m,ρn)+jφ(ρ

′
n,ρm)ejk

|ρ′n−ρm|
2

2L ejkL+j
π
2

= eχ(ρ
′
n,ρm)+jφ(ρ′n,ρm)

We assume the entries of H are independent and identically distributed. If within the transmit and
receive planes, the apertures are separated by at least an atmospheric correlation length, then the fading
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factor for each path is independent. If the distance between the transmit and receive planes is much greater
than distance between apertures, then the lengths of the nrx × ntx paths are approximately equal, and thus
the fading factor statistics are identical for each path. Additionally, if the bit period is much less than
atmospheric correlation time, then we can consider the turbulence statistics to be stationary.

Lastly, we note that we can write the channel transfer matrix as its singular value decomposition and
thus calculate the diffraction gain associated with the spatial “eigenmodes” of the matrix.

1
√
nrx

H = UΓV†

~ui, the ith column of U, is the ith output spatial eigenmode. ~vi, the ith column of V, is the ith input
spatial eigenmode. Γ is the diagonal matrix of singular values γ of H, and γ2i is the diffraction gain of the
ith spatial eigenmode. To obtain performance bounds for this channel, we now consider the distribution of
γ2 as ntx, nrx →∞ while β = ntx/nrx remains fixed.

Performance Bounds

Convergence to Marcenko-Pastur Density
The spatial eigenmode diffraction gains, or squared singular values of H/

√
nrx, are equal to the eigenvalues

of HH†/nrx. The nonzero eigenvalues of HH†/nrx should converge to the Marcenko-Pastur density as ntx,
nrx →∞:

f(γ2;β) =

√
max

[
0, x− (1−

√
β)2
]
max

[
0, (1 +

√
β)2 − x

]
2πγ2β

We limit our empirical distribution to nonzero squared singular values and do not include the point mass
at the origin of the Marcenko-Pastur density.

Figures 2 and 3 compare simulated distributions f̂(γ2;β) with the limiting Marcenko-Pastur density. In
all simulations, the distance between the receive and transmit planes was 10 kilometers. The distributions
in Figure 2 were computed under a weak turbulence assumption, such that σ2

χ ≈ 0.0228. Figure 3 shows the
distribution of diffraction gains under a strong turbulence assumption, where σ2

χ = 0.5.
We expect the convergence under strong turbulence to be slower than that for weak turbulence because

the rate of decrease for the higher moments of the matrix elements will be slower due to the larger variance.
In Figure 2, for ntx = 100, the theoretical density is very close to the empirical distribution regardless of β.
In Figure 3, under strong turbulence, we see that the β = 0.1 case (which has nrx = 1000) is visibly better
than β = 1 or 0.5 with fewer receive apertures. In both figures, we can see the convergence of the empirical
distribution from left to right (as nrx increases) and from top to bottom (as ntx increases).

We also note that the largest singular value is greater for systems with larger β. This means that we can
achieve a greater diffraction gain by optimizing the wavefront when we have more transmit apertures with
respect to a fixed number of receive apertures.
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Figure 2: The distribution of diffraction gains under weak turbulence and the Marcenko-Pastur density for
various β.

Figure 3: The distribution of diffraction gains under strong turbulence and the Marcenko-Pastur density for
various β.
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Bit Error Rate
The maximum singular value is important for computing the lower limit on the bit error rate for this channel.
For this computation, we assume that we have perfect knowledge of the channel, i.e. instantaneous feedback.
Therefore, at any given time, we know exactly the transfer matrix H and we can compute UΓV†. We further
assume that we are communicating via binary phase shift keying, such that we have two signal vectors ~x
and −~x. In order to minimize the bit error rate of transmission, we choose ~x = ~vmax such that we maximize
the diffraction gain of the input signal across the channel.

In the absence of the additive white Gaussian noise ~w, the detection statistic φ = Re{~u†max~y} is sufficient
to achieve perfect detection. Including noise, φ|~x is a normally distributed random variable with mean√
SNR(H~vmax) and variance 1. If the two bits are equiprobable, the probability of error can be described

by the tail of this distribution, and the probability of error given H is Q
(√

2SNRγ2max

)
.

As ntx, nrx →∞, from Marcenko-Pastur we know that γ2max converges to
(
1 +
√
β
)2. The Tracy-Widom

law tells us about the fluctuation of γ2max around that value. Thus the Tracy-Widom law gives us insight
into the instantaneous bit error rate, and the Marcenko-Pastur density gives us insight into the average bit
error rate (in the case of instantaneous feedback).

Figure 4 shows the empirical distribution of the bit error rate for varying ntx with β = 1. We sample the
transfer matrix distribution for 100 trials of 1000 bits each. The variance of the distribution clearly decreases
as ntx grows. As ntx →∞, this distribution can be represented as the Q-function of a scaled Tracy-Widom
distribution, and we can use known characteristics of the Tracy-Widom distribution to describe the behavior
of the bit error rate. We can use the CDF of the Tracy-Widom distribution to describe the outage probability
of the channel, i.e. the probability that the instantaneous bit error rate is less than some fixed P .

The average bit error rate should converge to

Q

(√
2SNR

(
1 +

√
β
)2)

We plot the simulated average bit error rate in Figure 5 against this theoretical prediction. For ntx = 100,
the average bit error rate matches the prediction closely. This expression for the bit error rate provides a
lower limit on the achievable bit error rate for a particular channel.

Thus we have used results from random matrix theory to bound the performance of the turbulent free-
space optical communication channel.
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Figure 4: The empirical distribution of the bit error rate over one hundred trials, with β = 1 and varying
number of apertures. SNR = 0.5.

Figure 5: The average bit error rate of simulated 1000-bit transmissions with β = 1 and varying number of
apertures.

6



Code

using PyPlot, ODE, Interact, Distributions;

Simulate Channel Transfer Matrix

function generateH(N_rx,N_tx,L,C_n2)

##Log-amplitude fluctuations
varX = minimum([0.124*k^(7/6)*C_n2*L^(11/6),0.5]);
mX = -varX;
Z = randn(N_rx,N_tx);
X = e.^(Z*sqrt(varX) + mX);

##Log-phase fluctuations
phi = rand(N_rx,N_tx) * 2 * pi;

##Channel Transfer Matrix
H = X.*e.^(im*phi);

end

Compute Marcenko-Pastur Distribution

function M_P(x,Beta)
if x == 0

f = 0;
else

num1 = maximum([0;(x-(1-sqrt(Beta))^2)]);
num2 = maximum([0;((1+sqrt(Beta))^2-x)]);
f = sqrt(num1*num2)./(2*pi*x*Beta);

end
end

Compare Simulated Diffraction Gain to Marcenko-Pastur Distribution

function compareDiffGain(N_rx,N_tx,L,C_n2)
H = generateH(N_rx,N_tx,L,C_n2);
A = H*H’/N_rx;
gamma = eigvals(A);
Beta = N_tx/N_rx;
plt[:hist](gamma,normed=true);
x = 0:.01:10
f = zeros(1001);
for i=1:1001

f[i] = M_P(x[i],Beta);
end
plot(x,f,"r",linewidth=3);
axis([0;10;0;1]);
return gamma;

end
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Simulate Bit Transmission

Compare Average Bit Error Rate to Asymptotic Theoretical Value

function AvgBER(bitstream, N_rx,N_tx,L,C_n2,SNR,trials)
B = 0;
for i=1:trials

H = generateH(N_rx,N_tx,L,C_n2);
F = svdfact(H/sqrt(N_rx));
Vmax = F[:V][:,1];
Umax = F[:U][:,1];
seqLength = length(bitstream);
suffStat = zeros(seqLength);
for k = 1:seqLength

w = randn(N_rx);
y = sqrt(SNR/N_rx)*H*Vmax*bitstream[k] + w;
suffStat[k] = real(Umax’*y)[1];

end
outstream = sign(suffStat);
accuracy = sum(bitstream .== outstream)/seqLength;
BER = 1-accuracy;
B = B + BER;

end
B = B/trials;
Q = 1 - cdf(Normal(),sqrt(2*SNR*(1+sqrt(N_tx/N_rx))^2));
return B, Q;

end

Compute Outage Probability

function OutageProb(bitstream, N_rx,N_tx,L,C_n2,SNR,trials)
B = zeros(trials);
for i=1:trials

H = generateH(N_rx,N_tx,L,C_n2);
F = svdfact(H/sqrt(N_rx));
Vmax = F[:V][:,1];
Umax = F[:U][:,1];
seqLength = length(bitstream);
suffStat = zeros(seqLength);
for k = 1:seqLength

w = randn(N_rx);
y = sqrt(SNR/N_rx)*H*Vmax*bitstream[k] + w;
suffStat[k] = real(Umax’*y)[1];

end
outstream = sign(suffStat);
accuracy = sum(bitstream .== outstream)/seqLength;
BER = 1-accuracy;
B[i] = BER;

end
Bcdf, Bbins = plt[:hist](B,20,cumulative=true,normed=true);
return B, Bcdf, Bbins;

end
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