
18.338 Eigenvalues of Random Matrices
Problem Set 1

Due Date: Wed Feb. 17, 2016

Homework

Do at least four out of the following problems (Computational/Mathematical problems are denoted as C/M.
Exercises with numbers and pages are from the class notes.)

Read selections from Chapters 6 through 9 from the notes. Please comment about what you have read
as if you were writing a substantial referee report. We want to know if there are any errors of any kind of
course. Also and perhaps more important, we want to hear comments of style. Furthermore, usually there is
one place where writing gets harder to follow – I’d like to know where that is for you.

Concentration of Measure for Gaussian Ensembles

It is remarkable how well the semicircle describes the histogram for Gaussian ensembles and other Wigner-type
matrices. These mathematical and computational problems investigate the semicircle, how good it is, and
how far off we can get.

Section 1.1 and section 5 of reference http://www-math.mit.edu/~{}Eedelman/homepage/papers/

flucts.pdf are related to this question.

Take as given that the tridiagonal matrix Tn when normalized by
√
βn (i.e. Hn = Tn/

√
βn) on Page 93

(Equation (6.3)) of the notes has the same eigenvalues as a Gaussian ensemble, where β = 1 is the GOE,
β = 2 is the GUE, and any β > 0 is allowed.

The computational problems allow for investigation. Do as much or as little as interests you. The main
thing is to do something. Ask us for help.

Codes are available on the class git side. https://github.com/alanedelman/18.338_Spring_2016

1. (M) or (C). The first moment (and all odd moments) of the eigenvalues of the Gaussian ensembles has
expected value 0. (This is a way of saying that IE[Tr(Tn)] = 0). Mathematically or with a Monte Carlo
simulation or both, conclude that Tr(Tn) is a scalar Gaussian. If you wish to access to Section 2.3.3 of
Anderson, Guionnet, Zeitouni http://www.wisdom.weizmann.ac.il/~zeitouni/cupbook.pdf (book
page 42, pdf page 56) you might compare 2.3.10. How close are they?

2. (M) or (C) The second moment is a factor of n2/2 times a χ2 random variable with n(n− 1)β/2 + n
degrees of freedom. Prove this by using simple properties of chi-square. (The degrees of freedom add.)

One might use approximations such as if X has the distribution of χ2
k then

√
2X is roughly normal

with mean
√

2k − 1 (or just
√

2k with unit variance). Potentially compare the concentration of measure
again.

3. (M) What would happen in Problem 1 and 2 if the matrices are Wigner matrices (i.e., diagonal has
variance 1 and the off-diagonal has variance 2) as n→∞? (Hint: use the Central Limit Theorem.)

4. (C) Investigate how other odd moments deviate from 0 or how even moment deviate from the Catalan
numbers.

5. (C) Try to investigate how the histograms themselves deviate from the semicircle. One can draw lots of
pictures to see the semicircle. but what is interesting is to take averages and watch the fluctuations.
See if you can estimate the fluctuations to the semicircle over various intervals using normals. One
might start by taking the mean and seeing how far off finite n is from infinite n, or one can consider
the variance.
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6. (C) Perform Monte Carlo experiments on non-Gaussians carefully enough to predict the deviation.

7. (M) or (C) Perform Monte Carlo experiments to explore the mean and variance of the sum of the
singular values of the bidiagonal model (Page 93, Equation (6.4)) (m = n) for different n’s. Furthermore,
how does the sum change as a function of β (Page 99, Equation (6.7))? Is the mean monotonically
going up or down? Where does it change?

8. (C) Plot the histogram of the square singular values of (for different z’s on the complex plane)

(randn(n,n) + im*randn(n,n)) / sqrt(2*n)− z ∗ I,

and compare |z| < 1 with |z| > 1.

9. Any exercises in Chapter 6

10. Amit Singer of Princeton mentioned this during February 2016 out of a paper he wrote. Investigate
numerically or mathematically the sum of the singular values for Laguerre ensembles normalized properly
and see whether they converge monotonically in an increasing or decreasing manner.


