
1

Applications of Spectral Matrix Theory in

Computational Biology
Soheil Feizi

Computer Science and Artificial Intelligence Laboratory

Research Laboratory for Electronics

Massachusetts Institute of Technology

Abstract

In this report, we consider three applications of Spectral Matrix Theory in computational biology.

First, we use spectral density functions of gene networks to infer their global structural properties. we

observe eigenvalue distributions of these networks follow scale-free spectral densities with heavy positive

tails. Second, we show how positive eigenvectors of modularity matrices can be used to highlight modules

over networks. Finally, we use a spectral decomposition to deconvolve indirect information flows and

infer direct interactions over networks.

I. INTRODUCTION

Using spectral matrix theory has become popular in analysis of biological networks since these methods

usually leverage the entire structure of networks and usually are more robust. Here, we consider three

applications of Spectral Matrix Theory in computational biology:

• In Section II, we use spectral density functions of gene networks to infer their global structural

properties.

• In Section III, we use a spectral decomposition of modularity matrices to highlight modules over

networks.

• In Section IV, we use a spectral decomposition of networks to deconvolve indirect information flows

and infer direct interactions over them.

2

II. STRUCTURAL PROPERTIES OF GENE REGULATORY NETWORKS USING EIGENVALUE

DISTRIBUTIONS

Understanding structural properties of biological networks is crucial to understand their functions. There

have been a lot of prior work to analyze quantities such as degree distributions, clustering coefficients and

shortest connecting paths. However, these quantities are loosely connected to global properties of these

networks. Here, we use a similar approach to reference [2] to analyze structural properties of regulatory

networks for human, fly and worm using their eigenvalue distributions.

The spectral density of a graph is the density of its eigenvalues defined as follows:

ρ(λ) =
1

N

N∑
i=1

δ(λ− λi), (1)

where N is the number of nodes. As N → ∞, ρ(λ) converges to a continuous function. The spectral

density of a graph is strongly connected to global structural properties of that graph. For example, suppose

Mk is the k-th moment of ρ(λ) defined as follows:

Mk =
1

N

N∑
i=1

(λi)
k =

1

N
Tr(Ak) =

1

N

∑
i1,...,ik

Ai1,i2Ai2,i3 . . . Aik,i1 , (2)

where A is the adjacency matrix of the graph. Therefore, NMk is the number of directed loops over

the graph (which is undirected).

Although the spectral density of an uncorrelated random graph converges to a semi-circle, spectral

densities of biological networks do not follow the semi-circle law as illustrated in Figure 1-a. On the

other hand, eigenvalue distributions of scale-free networks show a similar behavior (Figure 1-b), indicating

the scale-free nature of gene regulatory networks.

Another interesting point can be observed by using odd moments of the spectral density function.

Small odd moments indicates that the underlying undirected graph has fewer directed loops with odd

lengths. As tree structures have zero directed loops with odd lengths, one can conclude that, networks

with small odd spectral moments should have structural properties similar to trees.

Finally, note that these networks have larger positive eigenvalues compared to the negative ones. In

the next section, we will discuss about the importance of these eigenvalues in forming modules over the

network.

3

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

eigenvalue distribution of a simulated scale-free network

eigenvalue distribution of fly regulatory network

(b)

(a)

Fig. 1. Eigenvalue distribution of fly regulatory network
Panel (a) shows the spectral distribution of fly regulatory network. Panel (b) shows the eigenvalue
distribution of a random scale-free graph constructed using prefrential attachment.

III. NETWORK MODULARITY USING A SPECTRAL METHOD

In this section, we review spectral network modularity algorithm which is based on some metrics

defined in reference [1]. This algorithm assigns higher weights to interactions that are more likely to

belong to modules (group of densely connected nodes) (Figure 2). Here, we consider binary symmetric

input networks. However, similar ideas can be used to weighted graphs. Suppose N is the input network

with a modularity matrix M defined as follows:

M = N − ddT

2e
, (3)

where d(i) is the degree of node i and e is the total number of edges of the network N .

Suppose λi is the i-th positive eigenvalue of the matrix M and ui is its corresponding eigenvector.

Suppose the modularity matrix M has p positive eigenvalues. For each node i in the network N , we

define a modularity vector mi as follows:

4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

network edge ranks

e
d

g
e

 m
o

d
u

la
ri
ty

 r
a

n
k
s

across module edges

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

network edge ranks

e
d

g
e

 m
o

d
u

la
ri
ty

 r
a

n
k
s

within module edges

down-weighted edges

up-weighted edges

Fig. 2. A spectral method to highlight modules in the network
This figures illustrates how the spectral network modularity algorithm highlights modules over the
network.

mi(j) =
√

λiui(j) 1 ≤ j ≤ p. (4)

Algorithm 1. A spectral network modularity algorithm can be summarized as follows:

• compute node modularity vectors.

• compute edge modularity scores by ranking all pairwise distances between node modularity vectors.

• form a network based on edge modularities.

This method assigns higher weights to edges that are more likely to belong to regulatory modules by

considering the entire network topology and exploiting spectral analysis of input networks.

To characterize modularity of an input network N , we use a probabilistic approach which compares the

modularity of the network with the one of a randomly generated network with the same number of edges.

Suppose we have 2c modules (node partitions) in the network and a n× c binary matrix S = (s1| . . . |sc)

characterizes those partitions (modules). Two nodes are in the same module, if their corresponding rows

in the matrix S are identical.

For a given input network N , network modularity can be defined as follows:

5

Q = (number of edges within modules) (5)

−(expected number of edges across modules).

A probabilistic background network is modeled by assuming that an edge exists between nodes i

and j with probability d(i)d(j)/(2e) where d(i) and d(j) are degrees of nodes i and j, and e is the

total number of network edges. Under this probabilistic background model, the expected total number of

network edges is equal to e since

1

2

∑
i,j

d(i)d(j)

2e
=

1

4e

∑
i

d(i)
∑
j

d(j) = e.

Note that, under this model it is more likely to have an edge between two high degrees nodes than

between two low degree ones. By using this probabilistic background model, network modularity can be

written as follows:

Q =

n∑
i,j

c∑
k=1

N(i, j)S(i, k)S(j, k)− d(i)d(j)

2e
S(i, k)S(j, k)

=

n∑
i,j=1

M(i, j)S(i, k)S(j, k), (6)

where M is the modularity matrix defined as in equation (3).

By decomposition of the modularity matrix M to its eigenvalues λi and eigenvectors ui, equation (6)

can be re-written as

Q =

n∑
i=1

c∑
k=1

λi(u
T
i sk)

2 (7)

=

n∑
i=1

c∑
k=1

(
√

λiu
T
i sk)

2,

where sk is the k-th column of the matrix S. If S were unconstrained (not necessarily a binary

matrix), Q would be maximized by choosing columns of S parallel to the most positive eigenvectors of

the modularity matrix M . An unconstrained S can be viewed as a soft partitioning of network nodes in

contrast to a binary one which is a hard partitioning of network nodes. Therefore, if two nodes i and

6

j are more likely to be in the same module, their corresponding rows in the matrix S will be close to

each other (in the binary case, rows of the matrix S which correspond to nodes in the same module are

in fact identical). Having this intuition, we define node modularity vectors as in equation (4) which also

assigns higher weights to eigenvectors with larger eigenvalues. We then rank all edges based on distances

between their node modularity vectors.

For non-binary networks, first we map all edge weights to be between 0 and 1. To form the modularity

matrix M of equation (3), we use vector d whose i-th component is the sum of weights of edges connected

to node i (in the binary case, this simplifies to the degree of node i).

The computational complexity of the decomposition step of the proposed spectral network integration

algorithm is in the order of O(n3), where n is the number of nodes in the network. To reduce the

computation cost specially for large networks, one can only use the top q eigenvectors and eigenvalues

of the modularity matrix to form node modularity vectors.

IV. NETWORK DECONVOLUTION- A SPECTRAL METHOD TO DISTINGUISH DIRECT DEPENDENCIES

OVER NETWORKS

Network deconvolution introduced in [3] is a systematic approach of computing direct dependencies in a

network by use of local edge weights. Suppose Gobs represents an observed dependency matrix, a properly

scaled similarity matrix among variables. The linear scaling depends on the largest absolute eigenvalue

of the un-scaled similarity matrix and is discussed in more details in Section IV-B. Components of Gobs

can be derived by use of different pairwise similarity metrics such as correlation or mutual information.

In particular, gobsi,j , the (i, j)-th component of Gobs, represents the similarity value between the observed

patterns of variables i and j in the network.

A perennial challenge to inferring networks is that, both direct and indirect dependencies arise together.

A direct information flow modeled by an edge in Gdir can give rise to two or higher level indirect

information flows captured in Gindir:

Gindir = G2
dir +G3

dir + . . . (8)

The power associated with each term in Gindir corresponds to the level of indirection contributed by

that term. We assume that the observed dependency matrix, Gobs, comprises both direct and indirect

dependency effects (i.e., Gobs = Gdir +Gindir). Further, we assume that Gdir is an n×n decomposable

matrix.

7

Under the modeling assumptions, the following network deconvolution algorithm finds an optimal

solution for direct dependency weights by using the observed dependencies:

Algorithm 2. Network deconvolution has three steps:

• Linear Scaling Step: The observed dependency matrix is scaled linearly so that all eigenvalues of

the direct dependency matrix are between −1 and 1.

• Decomposition Step: The observed dependency matrix Gobs is decomposed to its eigenvalues and

eigenvectors such that Gobs = UΣobsU
−1.

• Deconvolution step: A diagonal eigenvalue matrix Σdir is formed whose i-th component is λdir
i =

λobs
i

λobs
i +1

. Then, the output direct dependency matrix is Gdir = UΣdirU
−1.

A. Optimality analysis of network deconvolution

In this section, we show how the network deconvolution algorithm proposed in Algorithm 2 finds an

optimal solution for direct dependency weights by using the observed ones.

Suppose U and Σdir represent eigenvectors and a diagonal matrix of eigenvalues of Gdir, where λdir
i

is the i-th diagonal component of the matrix Σdir. Also, suppose the largest absolute eigenvalue of

Gdir is strictly smaller than one. This assumption holds by using a linear scaling function over the un-

scaled observed dependency network and is discussed in Section IV-B. By using the eigen decomposition

principle, we have Gdir = UΣdirU
−1. Therefore,

Gdir +Gindir
(a)
= Gdir +G2

dir + . . . (9)

(b)
= (UΣdirU

−1) + (UΣ2
dirU

−1) + . . .

= U
(
Σdir +Σ2

dir + . . .
)
U−1

= U


∑

i≥1(λ
dir
1)i · · · 0

...
. . .

...

0 · · ·
∑

i≥1(λ
dir
n)i

U−1

(c)
= U


λdir
1

1−λdir
1

· · · 0
...

. . .
...

0 · · · λdir
n

1−λdir
n

U−1.

Equality (a) follows from the definition of diffusion model of equation (8). Equality (b) follows from the

8

eigen decomposition of matrix Gdir. Equality (c) uses geometric series to compute the infinite summation

in a closed-form since |λdir
i | < 1 for all i.

By using the eigen decomposition of the observed network, Gobs, we have Gobs = UΣobsU
−1, where

Σobs =


λobs
1 · · · 0
...

. . .
...

0 · · · λobs
n

 . (10)

Therefore, from equations (9) and (10), if

λdir
i

1− λdir
i

= λobs
i ∀1 ≤ i ≤ n, (11)

the error term Gobs −
(
Gdir + Gindir

)
= 0. Rewriting equation (11) leads to a non-linear filter over

eigenvalues in the network deconvolution algorithm:

λdir
i =

λobs
i

1 + λobs
i

∀1 ≤ i ≤ n. (12)

This nonlinear filter over eigenvalues allows network deconvolution to eliminate indirect dependency

effects modeled as in equation (8) and compute a globally optimal solution for direct dependencies over

the network with zero error.

B. Scaling effects

As discussed in Section IV-A, to have convergence of the right-hand side of equation (8), the largest

absolute eigenvalue of the direct dependency matrix Gdir (say β) should be strictly smaller than one

(i.e., β < 1). However, this matrix is unknown in advance and in fact, the whole purpose of having the

described model in equation (8) is to compute the direct dependency matrix. In this section, we show

that by linearly scaling the un-scaled observed dependency matrix Gus
obs, it can be guaranteed that the

largest absolute eigenvalue of the direct dependency matrix is strictly less than one. In the following, we

describe how the linear scaling factor α is chosen where Gobs = αGus
obs.

Suppose λ
obs(us)
+ and λ

obs(us)
− are the largest positive and smallest negetive eigenvalues of Gus

obs. Then,

by having

α ≤ max
(β

(1− β)λ
obs(us)
+

,
−β

(1 + β)λ
obs(us)
−

)
, (13)

the largest absolute eigenvalue of Gdir will be less or equal to β < 1.

9

In the following, we show how inequality (13) is derived. Say λdir and λobs(us) are eigenvalues of

direct and unscaled observation matrices. By a similar argument as the one of equation (9), we have

λdir =
λobs(us)

1
α + λobs(us)

. (14)

We consider three cases: λobs(us) ≥ 0, −1/α < λobs < 0 and λobs(us) < −1/α (in the case of

λobs(us) = −1/α, the function is undefined. Hence, we choose α to avoid this case).

• Case 1: when λobs(us) ≥ 0: In this case, we have

λobs(us)

1
α + λobs(us)

≤ β < 1 ⇒ α ≤ β

(1− β)λobs(us)

• Case 2: when −1/α < λobs < 0: In this case, we have

−λobs(us)

1
α + λobs(us)

≤ β < 1 ⇒ α ≤ −β

(1 + β)λobs(us)

• Case 3: when λobs(us) < −1/α:

In this case, we have

λobs(us)

1
α + λobs(us)

≤ β < 1 ⇒ 1

α
≤ 1− β

β
λobs(us) < 0,

which is not possible since α > 0. Therefore, α should be chosen so that eigenvalues of the unscaled

observation matrix do not fall in this regime. In other words, for negative λobs(us), α < −1
λobs(us) . This

condition trivially holds as a consequence of Case 2.

Putting all three cases together, inequality (13) is derived which guarantees the largest absolute

eigenvalue of the direct dependency matrix is less than or equal to 0 < β < 1.

In equation (8), diffusion effects decay exponentially with respect to the indirect path length. For

example, second order indirect effects decay proportional to β2 where β is the largest absolute eigenvalue

of Gdir. Therefore, smaller β means faster convergence of the right-hand side of equation (8) and in

turn faster decay of diffusion effects. In other words, if β is very small, higher order interactions play

insignificant roles in observed dependencies since they decay proportionally to βk where k is the order

of indirect interaction.

10

REFERENCES

[1] M. Newman. Finding community structure in networks using the eigenvectors of matrices. Physical review E, 74(3):036104,

2006.

[2] Farkas, I., I. Dernyi, H. Jeong, Z. Neda, Z. N. Oltvai, E. Ravasz, A. Schubert, A-L. Barabsi, and T. Vicsek. Networks in

life: Scaling properties and eigenvalue spectra. Physica A: Statistical Mechanics and its Applications 314.1 (2002): 25-34.

[3] Soheil Feizi, Daniel Marbach, Muriel Médard and Manolis Kellis Network Deconvolution - A General Method to

Distinguish Direct Dependencies over Networks. Nature biotechnology.

