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This paper will provide a brief overview of the uses of RMT in finance.

The primary application of RMT in finance is improving estimates from empir-

ical covariance matricies of various assets. This paper will begin with a brief

overview of modern portfolio on which these applications rely. The paper will

then outline the use of the Marcenko-Pastur law in analyzing empirical covari-

ance matricies. A comparison of predictions from Marcenko-Pastur and the

actual empirical data will be given and what conclusions can be drawn from

the differences between the two. The paper will then briefly look at some other

applications of RMT in finance.

The goal of portfolio optimization is to maximize expected returns while

minimizing risk (defined as variance). This can be phrased as either fixing the

risk and then maximizing the expected return or fixing the expected return and

then minimizing the risk. We will work with the later formulation. Formally for

a portfolio P of N assets we define the expected return RP as RP =
∑N
i=1 piRi

where pi is the amount invested in asset i (we normalize so that
∑N
i=1 pi = 1) and

Ri is the expected return of asset i. We define the risk as σ2
P =

∑N
i,j=1 piCijpj

where C is the covariance matrix. For fixed RP we can minimize σP with

Lagrange multipliers. We get N+2 linear equations

for all i 2
∑N
j=1 pjCij + λ1Ri + λ2 = 0∑N

i=1 piRi = RP∑N
i=1 pi = 1

Unfortunately, getting C from empirical data is tricky. Our financial time

series are generally not very long (the length is usually in the thousands) while

the number of assets we want to consider are typically in the hundreds. This
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will introduce substantial noise in the covariance matrix. The general idea of

this paper is to use the Marcenko-Pastur Law to estimate what the empirical

covariance matrix if all assets were uncorrelated and then examine the discrep-

ancy to find actual signal. We can define the empirical covariance matrix C

by Cij = 1
T

∑T
i=1 δxi(t)δxj(t) where the δxis are normalized so that they have

mean zero and variance one.

If we assume the assets are uncorrelated then the δxis are independent,

identically distributed random variables. Hence, C becomes a Wishart matrix or

a Laguerre ensemble. We defineQ = T/N and if we hold Q constant while taking

N →∞, T →∞ the Marcenko-Pastur law gives the distribution of eigenvalues

of C: ρC(λ) = Q
2πσ2

√
(λmax−λ)(λ−λmin)

λ for λ ∈ [λmin, λmax]

with λmaxmin = σ2(1 + 1/Q±
√

1/Q)

These results only strictly hold for N →∞ but they are approximately valid

for much smaller N. We could explicitly look at the error term from using

finite N but it does not add much to the discussion so we omit it. In a 1999

paper, Laloux et al compared the prediction based on uncorrelated asset returns

to the performance of the S&P 500. They find that the largest eigenvalue

based on the performance of the S&P 500 is about 25 times as large as the

theoretical maximum which presumably indicates an actual signal. Indeed the

corresponding eigenvector to this eigenvalue puts roughly equal weight on all

stocks representing common market performance. However, the distribution of

small eigenvalues is close to the predicted distribution and the vast majority of

eigenvalues fall in [λmin, λmax].

In a 2002 paper, Plerou et al analyze returns of a set of 1,000 stocks over

three periods and find largely similar results. They also find that many of the

other larger than predicted eigenvalues have corresponding eigenvectors that

are largely made up of stocks from a particular industry. They also find that

the distribution of spaces between eigenvalues is mostly in agreement with the

predictions of random matrix theory. Furthermore, they find that the deviating
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eigenvectors are largely stable in time. In a 2004 paper, Utsugi et al find largely

similar results for the Tokyo Stock Exchange although they do not find that

large eigenvectors correspond to eigenvectors with components from particular

industries as Plerou et al did.

Laloux et al also find that for eigenvectors corresponding to eigenvalues that

fall in the predicted range their components follow a Gaussian distribution as

predicted by random matrix theory. However, the components of eigenvectors

corresponding to large eigenvalues do not follow this distribution. Laloux et al

use this to ”clean” the covariance matrix which they find reduces risk. However,

they find that even the ”cleaned” covariance matrix understates true risk.

In a 2004 paper, Pafka et al generalize the above techniques for exponentially

weighted random matricies. The method is motivated both by the earlier work

on applications of random matrix theory to financial covariance matricies dis-

cussed above and by other work on exponentially weighted averaging of returns

to deal with heteroskedasticity in financial time series. There are no correspond-

ing analytic results to those found above but numerical results can be readily

found. Pafka et al find that the combination of random matrix theory filtering

of data and exponential weighting of returns produces better estimates than

either method alone.

In conclusion, results from random matrix theory are of great interest but

theoretically and practically in understanding financial time series. Although

the principal application of random matrix theory in finance remains reducing

noise in empirical covariance matricies there are other potential applications as

well. A 2009 paper by Eom et al uses random matrix theory to help determine

topological properties of financial networks based on minimal spanning trees.

A 2009 paper by Bai et al uses random matrix theory and bootstrapping to

improve portfolio optimization.
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