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Level Spacing Function

Definition (Gaussian Ensemble Spacing Function)
Let J ⊂ R be an open interval.

E
(n)
β (k; J) ≡ P(k eigenvalues of the n × n Gaussian β-ensemble lie in J)

Let J = (0, s). Then E2(0; J) = probability no eigenvalues lie in (0, s).
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Fredholm Determinant

It is well known that E2(0; J) can be represented as a Fredholm
determinant:

Theorem (Gaudin 1961)
Given Ksin(x , y) = sinc(π(x − y)),

E2(0, J) = det
(
I − Ksin �L2

J

)
Note the operator’s restriction to square integrable functions over J. In
general we will choose J = (0, s), and will notate E2(0, (0, s)) as E2(0, s)
as per Bornemann’s conventions.
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Integral Formulation

Theorem (Jimbo, Miwa, Mori, Sato 1980)

E2(0; s) = exp

(
−
∫ πs

0

σ(x)

x
dx

)
where σ(x) solves a particular form of the Painleve V equation:

(xσ′′)2 = 4(σ − xσ′)(xσ − σ − (σ′)2), σ(x) ≈ x

π
+

x2

π2
(x → 0)
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Tracy-Widom Distribution

Definition (Tracy-Widom Distribution)
Let F2(s) ≡ P( no eigenvalues of large-matrix limit GUE lie in (s,∞))
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Determinantal Representation

Theorem (Bronk 1964)
Given

KAi(x , y) =
Ai(x)Ai’(y)− Ai’(x)Ai(y)

x − y

we have
F2(s) = det

(
I − KAi �L2

(s,∞)

)
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Integral Formulation

Theorem (Tracy, Widom 1993)

F2(s) = exp

(
−
∫ ∞
s

(x − s)u(x)2dx

)
where u(x) is the Hastings-McLeod (1980) solution to the Painleve II
equation

u′′ = 2u3 + xu, u(x) ≈ Ai(x) (x →∞)
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The common point of view, and why it’s wrong.

Common point of view:

I Painleve formulation is somehow numerically “better behaved” than
Fredholm determinant

I Solving initial value problem for numerical integration is easier to
implement than Fredholm

Bornemann’s view:

I Numerical evaluation of Painleve transcendents is actually fairly
involved. Stability is a major concern.

I There exists a simple, fast, accurate numerical method for
evaluating Fredholm determinants

I Many multivariate functions (joint prob. dists.) have a nice
representation as a Fredholm determinant, but no representation in
terms of a nonlinear PDE.
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Straightforward Approach: Solving the IVP for Painleve

All of the examples we are interested in take asymptotic IVP form:
Given an interval (a, b), we seek u(x) that solves

u′′(x) = f (x , u(x), u′(x))

subject to either of the asymptotic one-sided conditions

u(x) ≈ ua(x) (x → a)

or
u(x) ≈ ub(x) (x → b)
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Straightforward Approach (cont.)

Problem 1: Must identify asympotic expansion of u(x) – not always easy.
Even with expansion, we must choose initial point and asymptotic order
of approximation, so choose a+ > a (or b− < b) close to boundary and
compute solution to the (standard) IVP problem

v ′′(x) = f (x , v(x), v ′(x))

v(a+) = ua(a+), v ′(a+) = u′a(a+)

or
v(b−) = ub(b−), v ′(b−) = u′b(b−)
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Straightforward Approach (cont.)

Problem 2: Standard solution methods demonstrate numerical instability.
Example: Computing F2(s) = exp

(
−
∫∞
s

(x − s)u(x)2dx
)
:

v(x)′′ = 2v(x)3 + xv(x), v(b−) = Ai(b−), v ′(b−) = Ai’(b−)

Choosing b− ≥ 8 gives initial values accurate to machine precision
(about 10−16 for IEEE doubles). Choose b− = 12 yields these results:
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Stability Issues
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Less Straightforward Approach: Solving the BVP for
Painleve

Stability issues described in depth in Bornemann’s paper lead to a BVP
approach.
We use asymptotic expression ua(x) at (x → a) to infer asymptotic
expression ub(x) at (x → b), or vice versa.
Approximate u(x) by solving BVP:

v ′′(x) = f (x , v(x), v ′(x)), v(a+) = ua(a+), v(b−) = ub(b−)

Requires four choices: values of a+, b−, and order of asymptotic
accuracy for ua(x) and ub(x)
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Less Straightforward Approach: An Example

Computing F2(s) via computation of u(x) via BVP methods:
By definition, u(x) ≈ Ai(x) (x →∞) so we take ub(x) = Ai(x).
Choose a+ = −10, b− = 6 (Dieng, 2005).
We need to choose a sufficiently accurate asymptotic expansion for
ua(x). Tracy and Widom show

u(x) =

√
−x

2

(
1 +

1

8
x−3 − 73

128
x−6 +

10657

1024
x−9 + O(x−12)

)
, (x → −∞)

so we’ll use that for ua(x).
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Stability Issues
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Pitfalls of BVP approach

I Require turning asymptotic expansion at one endpoint into
asymptotic endpoint at other point. Not easy!

I Selecting appropriate a+ and b− along with indices of truncation is a
bit of a black art.

I Actually solving BVP requires choosing starting values for Newton
iteration, discretizing the DE, choosing a good step size, etc.

Punchline: BVP approach is insufficiently ”black-box” for us.
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Better Approach: Numerical Evaluation of Fredholm
Determinants

Choose your favorite quadrature rule (Clenshaw-Curtis is good) over

nodes xj ∈ (a, b) and positive weights wj :
∑m

j=1 wj f (xj) ≈
∫ b

a
f (x)dx

The Fredholm determinant

d(z) = det
(
I − zK �L2

(a,b)

)
has the approximation

Am = K (xi , yj)
m
i,j=1

dm(z) = det
(
δij − z · w1/2

i Amw
1/2
j

)
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Evaluating Finite-Dimensional Determinants

This is a standard Numerical Linear Algebra problem.

I We need the value at a single point z ∈ C.
Compute LU of (I − zAm), get determinant from

∏m
j=1 Ujj

Computing dm(z) for a single z takes O(m3) time.

I We need the value at many points, want dm(z) as polynomial.
Compute eigenvalues λj of Am via QR (one-time cost of O(m3)
time, but worse constant factor than LU in practice), then form

dm(z) =
m∏
j=1

(1− zλj)

Computing dm(z) takes O(m) time.
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Sample Matlab Code

The following code computes F2(0) to one unit of precision in the last
decimal place:

>> m = 64; [w, x] = ClenshawCurtis(0, inf, m); w2 = sqrt(w);

>> [xi, xj] = ndgrid(x, x);

>> KAi = @AiryKernel;

>> F20 = det(eye(m) - (w2’ * w2).*KAi(x, x))

F20 = 0.969372828355262
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Wrapup

I Computing Fredholm Determinants is faster, easier, and more stable
than integrating Painleve IVP or BVP.

I Being able to handle things that are expressed in non-PDE form is
useful.

I Bornemann uses the toolset to identify (and subsequently prove)
several new results (omitted here for brevity) about distributions of
the k-th largest eigenvalue in the soft-edge scaling limit of the GOE
and GSE – the numerical code generates immediate insights!
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