MIT 18.338 Term Project: Numerical
Experiments on Circular Ensembles and Jack
Polynomials with Julia

N. Kemal Ure
May 15, 2013

Abstract

This project studies the numerical experiments related to averages
of Jack Polynomials on Circular Ensembles. Main aim of the project is
to produce efficient numerical implementation of sampling from circular
ensembles and evaluation of Jack polynomials. Julia computing language
is utilized for this purpose. Numerical results reinforce the statements
of the theorem and it is shown that especially parallel implementation
of Julia provides superior computation speed compared to MATLAB and
non-parallel Julia implementations.

1 Background

This section provides the basic facts about circular ensembles [1] and Jack poly-
nomials [2].

1.1 Circular Ensembles

Circular ensembles are simply measures on spaces of unitary matrices (i.e. com-
plex square matrices U such that U*U = UU* = I, where U™ is the conjugate
transpose and [is the identity matrix). Circular ensembles are parametrized
by 8 > 0 € R and the most commonly encountered circular ensembles are,

1. Circular Orthogonal Ensemble (COE), f = 1, symmetric unitary matrices
2. Circular Unitary Ensemble (CUE), 8 = 2, unitary matrices

3. Circular Symplectic Ensemble (CSE), 8 == 4, unitary quaternion matri-
ces

Let U(n) represent group of n x n unitary matrices and let U be a ran-
dom matrix from drawn according to the Haar measure on this group. Let,
(A1, -.-; An) be the eigenvalues of the random matrix U. Since U is a unitary

matrix, it’s eigenvalues lie on the unit circle thus, A\, = e*%* for some 6 € [0, 27).
It is a known result from random matrix theory that the probability density
function of 6 = (64, ...,0,) is given as

o1 0y, 0,18
pO)=— I le™ -, (1)

B <h<j<n

where Z,, g is a normalization constant.

1.2 Jack Polynomials

Jack polynomials are a set of multivariate polynomials parametrized by a pa-
rameter 8 > 0. Let Py(n) the space of symmetric homogeneous polynomials of
degree k in n variables. For a fixed 8, Jack polynomials are indexed according
to k (a partition of k) and they serve as a basis for Py (n).

There are many different definitions of Jack polynomials, the one that is
more useful to us is given with their connection regarding to circular ensembles.
Macdonald [3] showed that,

/ T2 (e, ...), Jf(ewl, vy €00) H e — 1% |df;...d0, = 5. n. (2)
[0,27]™

j<k

Eq. 2, in conjunction with p.d.f. in 1 shows that Jack Polynomials orthog-
onalize the circular ensembles. Let X be an square matrix with eigenvalues
(A1y s An), and define J2(X) = JZ?(A1,...,\,). Thus for a fixed B and two
partitions k # A, we can state that,

E[JZ(U)J{(U)] =0, (3)

where the expectation is taken over the random unitary matrix U according
to the probability measure defined in Eq. 1. The basic aim of this project
is to evaluate the expectation in 3 by Monte-Carlo simulations to verify that
expectation indeed converges to zero as the number of samples used in the
simulation increases. It is clear that in order to evaluate this expression we
need two subroutines that,

1. Sample a random unitary matrix and find its eigenvalues
2. Evaluate the Jack function on these eigenvalues

In the next two sections we give the description of the theoretical properties
that are used in the efficient numerical implementation of these subroutines
based on the works [4, 5].

2 Sampling from Circular Ensembles

We will focus our attention to a specific class of unitary matrices called unitary
upper Hessenberg matrices, which are ”almost” upper triangular matrices with
all zero entries above below it’s first superdiagonal. Here is an example of an
unitary upper Hessenberg matrix,

0.5693 + 0.0947 —0.0042 + 0.0132¢ 0.2468 + 0.7785¢
0.8168 0.0014 — 0.0097: —0.2614 4 0.5153¢
0 0.9999 0.9999

In the work [4], Ammar et. al showed that there is one to one correspondence
between the Schur parameters v; € C,j = 1,...,n and n X n upper unitary
Hessenberg matrices. The Schur parameters are a finite sequence of complex
numbers such that

il <11 < <yl = 1. (4)

For given Schur parameters {y} we can construct the corresponding unitary
upper Hesseberg matrix as,

H({7}) = G1(1)--Gn-1(n-1)Gn(7n), (5)

where G is the Givens reflector [6], which also represents the generalization

of this formula to an arbitrary . Thus to sample a uniformly random unitary

upper Hessenberg matrix, we can simply generate a random sequence of Schur

parameters in Eq. 4, and then use the formula in 5 to compute the unitary
upper Hessenberg matrix.

3 Efficient Evaluation of Jack Polynomials

The Jack polynomials can be expressed in monomial basis through summation
over semi-standard Young tableaux (SSYT),

=" fr(Ba"
T—-SSYT
however this methods is computationally very inefficient. Demmel and Koe
[5] developed and algorithm that recursively evaluate the Jack function based
on the principal of dynamic programming. Recursion works as,

Jf(a:l, ey Tpy) = Z Jf(xl, ...,xn_l)x‘rf‘/“lcld, (6)
HEA

where ¢, is a coefficient that depends on both partitions A and p. As it can
be seen form the recursion, algorithm first evaluates the Jack functions of n — 1
variables and uses linear combinations of these polynomials to calculate Jack
polynomial in n variables. Koev provided an implementation of the algorithm at
his website (http://math.mit.edu/ plamen/software/jack.m) in MATLAB lan-
guage.

4 Results

4.1 Sampling Unitary Matrices

The algorithm that samples unitary upper Hessenberg matrices (described in
Section 2) was implemented in the JULIA language. The code is available in
the appendix.

=10 t=100
1 3 N 1 Lo
° ° &° @,
o OO
05} o 05 ¢
s %
K}
0 8
g
g 5 $
-05 -051% g
o o E
i
= 1 oq, o ©,
21 05 0 05 1 21 05 0 05 1
t= 1000 t= 10000
1 1
05 05
-05 -05
-1 -1
21 05 0 05 1 21 05 0 05 1

Figure 1: Eigenvalue spread of random unitary Hessenberg matrices for different
samples sizes.

Fig. 1 displays the sampled eigenvalues of random unitary matrices (with
n = 3) on the complex plane for different sample sizes (10,100,103 and 10%).
The figure shows that as the sample size increases eigenvalues of the sampled
matrices cover the entire unit circle. These figures indicate that the algorithm
succeeds in generating random matrices with eigenvalues on the unit circle.

4.2 Monte-Carlo Evaluation of Eq. 3

The recursive Jack polynomial evaluation algorithm described in Section 3 was
implemented in JULIA language based on Koev’s MATLAB implementation.
Then the random matrices sampled with the code described above was fed to
this process, and the outputs of the Jack functions were averaged over many
samples and different partitions. Fig. 2 shows that as the number of samples
increase, the absolute value of expectation in Eq. 3 decays to zero.

Fig. 3 plots the average number of samples required for expectation to
converge within € = 0.0001 for different 8 values. It is shown that lesser number
of samples is required for convergence as the value of £ increases.

0.025

0.02

0.015

0.005

Absolute value of Averages of Jack Polynomials

1 2 3 4 7 8 9 10

5 6
Number of samples x 10*

Figure 2: Absolute value of average of jack polynomials on circular ensembles
vs. number of samples.

N
)

N

Number of samples required to converge within &
n
= o

o
o

Figure 3: Average number of samples required for expectation to converge
within € = 0.0001 for different 5 values.

4.3 MATLAB - Julia Comparisons

Table 1 shows the running time (in seconds) of MATLAB, Julia and Parallel
Julia implementations for the numerical procedure described at the Results
section for the calculation of Fig. 2 over different sample sizes. This table
clearly indicates the computational power of Julia; for the larger sample values
Julia is almost 20 times faster than the MATLAB implementation. Table also
show that paralleling the code gives additional computation time saving.

Number of Samples | MATLAB | Julia | Parallel Julia (4 Cores)
500 5.1 1.7 1.3
1000 10.2 1.9 1.8
2000 20.3 24 1.9
5000 51.8 3.6 21
50000 516.4 25.6 3.9

Table 1: Comparison of running times (in seconds) of MATLAB, Julia and
Parallel Julia implementations

References

[1] F.M. Dyson ”"The threefold way. Algebraic structure of symmetry groups
and ensembles in quantum mechanics”. J. Math. Phys. 3: 1199. (1962).

[2] Jack, Henry, ”A class of symmetric polynomials with a parameter”, Pro-
ceedings of the Royal Society of Edinburgh, Section A. Mathematics 69:
118, (1971).

[3] Macdonald, I. G., Symmetric functions and Hall polynomials, Oxford
Mathematical Monographs (2nd ed.), New York: Oxford University Press,
ISBN 0-19-853489-2, MR 1354144 (1995)

[4] Ammar, Gregory, William Gragg, and Lothar Reichel. ”Constructing a
unitary Hessenberg matrix from spectral data.” In Numerical linear alge-
bra, digital signal processing and parallel algorithms, pp. 385-395. Springer
Berlin Heidelberg, 1991.

[6] Demmel, James, and Plamen Koev. ” Accurate and efficient evaluation of
Schur and Jack functions.” Mathematics of computation 75, no. 253 (2006):
223-239.

[6] Forrester, Peter J., and Eric M. Rains. ” Jacobians and rank 1 perturbations
relating to unitary Hessenberg matrices.” arXiv preprint math/0505552
(2005).

Appendix
JULIA codes

Calculate emprical averafe of Jack polynomials
on circular ensembles
require (” circular.jl”)
require (7 jack_eval.jl”)
require (” samplejackaverage. jl”)

n=3

beta = 7
alpha=2/beta

t = 10000

kl=[1 1]
k2=[2]

xx = zeros (1,n)

jj1 = JackEvaluator (kl,xx,alpha)
jj2 = JackEvaluator (k2,xx,alpha)

v = 0 4+ Oxim

println (" At Iteration 7,i)
v = v + samplejackaverage (jjl ,jj2 ,n,beta)

end

println (abs(mean(v)))
toc ()

Parallel implementation of Circular Jack
@everywhere require (” circular.jl”)
@everywhere require (” jack_eval.jl”)
@everywhere require (" samplejackaverage.jl”)

@everywhere n = 3
@everywhere beta =50
@everywhere alpha=2/beta

#Q everywhere data = zeros(Float64,1,10)
#for j =1:10
t =100

@everywhere kl=[1 1]
@everywhere k2=[2]

@everywhere xx = zeros (Complex128,1 ,n)
@everywhere jjl = JackEvaluator (kl,xx,alpha)
@everywhere jj2 = JackEvaluator (k2,xx,alpha)
@everywhere k =1

v = 0 4+ 0x*im

tic ()

#println (mean(v))

v = @parallel (4+) for i=1:t
samplejackaverage (jjl ,jj2 ,n,beta)

end

println (abs(v/t))

#data[j] =abs(v/t)

#end

#end

#open(readall ; "dataa.txt”)
#writecsv (" data.csv” data)

toc ()

require (” circular.jl”)
require (” jack_eval.jl”)

function samplejackaverage (JE1,JE2,n,beta)
e=eigvals(circular (n,beta))

return evaluate (JELl,e)xevaluate (JE2,e)’
end

Code for circular ensemble, translated from A. Edelman’s code

function circular (n,beta)

Compute Schur Parameters (Verblunsky coefficients)

rn = rand(1l,n—1) # Random numbers for schur magnitudes
rp = rand(1l,n—1) # Random numbers for schur phases

e = (beta/2)x[1:(n—1)] # The Theta_subscripts (v—1)/2

a = Array(Float64,1,n—1)

einv = 1./e

for i = 1:n-1

a[i] = sqrt(l—rn[i] einv[i]) # Schur parameters from Theta
end

rho = sqrt(l—a."2) # Complementary Parameters

a = a .x exp(2xpiximxrp) # Random Phase

Compute unitary upper Hessenberg
z = exp (2« pixim*rand (1))

for j=1:n-1
z=[1 zeros(1,j); zeros(j, 1) z]
G=[a[j] rho[j]irho[j] —alj]’]
z[1:2,:]=Gxz[1:2,:]

end

return z

end

18.338 Project
Convert Plamen Koev’s MATLAB code to Julia

Type Definition
type JackEvaluator

X
ja
alpha
Lp
Lmax
n

lma
kappa

function JackEvaluator (kappa,xx,alphal)

X = XX

alpha = alphal

n = length (x)

Lp = sum(sign (kappa))

lma = zeros (Lp,1)

kappa = kappa[l:Lp]

Lmax = kappa+1

ja = Infxones(prod(Lmax+1),n) + Oxim=ones(prod(Lmax+1),n)
new(x,ja ,alpha ,Lp,Lmax,n,lma, kappa)

end

end

Function Definitions

The main Jack function evaluator
function evaluate(self::JackEvaluator ,xeval)

self .x =xeval
f = 0.0 + 0.0xim

if self.Lp>0
self .lma[self.Lp] =1
for i = self.Lp—1:—-1:1
self .lmafi] = self.lmafi+1]*self.Lmax[i+1]
end
Initialize

initialize (self ;1,0);

f = jackl (self ,self.n,0 nmu(self,self.kappa),nmu(self , self.kappa
else

f =1.0 + 0.0xim
end

return f
end

Initialize Function
function initialize (self::JackEvaluator k,1)
if k<=self.Lp
m =self .Lmax[k]—1
if k>1
m = min(m, part (self ;1 ,k—1))
end
for i =1m
1 =1+ self.lma[k]
self .ja[l+1,1:n] = Inf % ones(1l,n) + Oximxomnes(1l,n)
initialize (self [k+1,1);
end

end

end

Part Function

function part(self::JackEvaluator ,pn,i)

if i >length(self.lma)

f=0
else
if i =1
f = floor (pn/self.lma[i])
else
f = floor (mod(pn, self.lmafi—1])/self.lma[i])
end
end
#println (" Part output : 7,f)
return f

end

Jackl Function
function jackl(self::JackEvaluator,j,k,lambda,l)
s = 1.0 + 0.0*im
if 1<=j & 1>0
t = self.ja[l+1,]]

if k==08&& t != Inf
s =t

elseif part(self 1,j4+1)>0
s = 0.0 4+ 0.0xim

elseif j==

s = self .x[1]" part(self ,1,1)xprod(l + self.alphax*[0:part(self 1,1)—1

else
if k ==0
1 =1
else
i =k
end

s = jackl(self ;j—1,0,1,1)*AB(self ,lambda,l)xself.x[j] lm(self ,lambda
while part(self ,1,i)>0
if part(self 1,i) > part(self 1,i+1)
if part(self 1,i)>1

s = s + jackl(self ,j,i,lambda,l—self.lma[i])
else

s = s+ jackl(self ,j—1,0,1-self .lmaf[i],l—self.lma[i])*AB(s
end
end

i =i+l

end
end
it k=20
self.ja[l+1,j] = s
end

end
#println (” Jackl output : 7,s)

return s
end

AB Function
function AB(self::JackEvaluator,l ,m)
f =1

for i =l:self.Lp
for j=l:part(self jm,i)

if 1.t (self ,1,j) = 1_t(self m,j)

f =f/(1_t(self ,m,j) —1i + self.alphax(part(self mi) — j + 1))

else
f =1/(1-t(self ,mj) —i + 1 + self.alphax(part(self mi) — j))
end
end
end

for i =l:self.Lp
for j=Il:part(self 1,1)
if 1_t(self,1,j) = 1_t(self m,j)

f = fx(l_t(self,l,j) —i + self.alphax(part(self 1,i) — j + 1))

else
f = fx(l_t(self,1,j) -1 + 1 + self.alphax(part(self 1,i) — j))

end
end
end
#println ("AB output : 7 f)
return f
end

lm function

function lm(self::JackEvaluator,l ,m)
f=0
for i =l:self.Lp

f = f+ part(self ;1,i) — part(self ;m,i)

end
#println ("lm output : 7, f)
return f

end

1_t function

function 1_t(self::JackEvaluator,l, q)

while part(self ,1,i) >= ¢

f=1+1
i =i+l
end
#println (" 1_t output : 7 ,f)

return f
end

nmu function

function nmu(self::JackEvaluator,1)

f=0

end

for i =l:self.Lp
f = self .Lmax[i]*f

if i<= length(1)

f = f+1[i]
end
end
#println ("nmu output : 7, f)
return f

