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Abstract. This report is primarily an exposition of a result from the 2004
paper of Collins and �niady[1], Integration with Respect to the Haar Measure

on Unitary, Orthogonal and Symplectic Group. Beginning with the classical
Schur-Weyl duality result, we derive the expression for the moments of unitary
group U(d) in terms of the Weingarten function. Also included is a description
of a basic MATLAB implementation allowing the computation of arbitrary
moments of U(d) of order ≤ 10 for any dimension d.

1. Introduction

Let U(d) be the group of unitary d×d matrices over C. As a compact Lie group
it comes equipped with a unique probability measure which is invariant under left
and right group multiplication. This is the Haar measure, which we denote dU . We
are interested in a formula for computing the moments of U(d), by which we mean
expressions of the form

ˆ

U(d)

Ui1j1 · · ·UinjnU i′1j′1 · · ·U i′mj′mdU

where i, j, i′, j′ are arbitrary multi-indices. Of course, armed with a formula for the
moments, any polynomial expression in the entries of U may be integrated with
respect to Haar measure. We will see that the symmetry of the Haar measure with
respect to group multiplication allows us to compute the moments with an exact
algebraic expression.

Before treating the general case we will examine a few special cases. First up:
What is

´
UijdU for some indices i, j? The symmetries of Haar measure require this

to be zero. One neat way to see this is to form a d× d matrix M whose i, jth entry
is the above, for 1 ≤ i, j ≤ d. Writing the entirety in matrix form, we have, for any
�xed U0 ∈ U(d), M =

´
U dU =

´
U0U dU = U0

´
U dU = AM , where we used the

fact that dU is invariant under the change of variables U 7→ U0U . But M = U0M
for all unitary U0 can only hold if M = 0. In fact, using U0 = eiθI we can deal
directly with the moments themselves:

´
UijdU =

´
eiθUijdU = eiθ

´
UijdU =⇒´

UijdU = 0. This also works for the more general moments, giving an overall

phase factor unless the number of U ′ijs and the number of U
′
i′j′s are equal, so´

U(d)
Ui1j1 · · ·UinjnU i′1j′1 · · ·U i′mj′mdU = 0 whenever n 6= m.

In fact, multiplying on the left and right by diagonal unitary matrices U0 and

U1 with di�erent phase factors eiθ
(0)
k , eiθ

(1)
k for each diagonal entry shows that, for

the moment to be non-zero, each index appearing in the multi-index i must appear
1
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the same number of times in the multi-index i′, and similarly for the indices of j
and j′. Combining the last two observations, we have:

Proposition.
´
U(d)

Ui1j1 · · ·UinjnU i′1j′1 · · ·U i′mj′mdU = 0 whenever m 6= n. Fur-

thermore, when m = n, for the moment to be non-zero it is necessary that there

exist permutations σ, τ ∈ Sn such that σ(i) = i′ and τ(j) = j′.

Finally, let us consider an evidently non-zero integral:
´
UijU ijdU =

´
|Uij |2 dU .

To compute this, �rst note that for any unitary matrix, Σj |Uij |2 = 1, so Σj
´
|U1j |2 dU =

1. But since we can permute the column indices of U by right-multiplication with
a unitary permutation matrix, which leaves dU invariant, all the terms in this sum
must be equal, so

´
|Uij |2 dU = 1/d for each 1 ≤ i, j ≤ d.

When n > 1 we cannot use such elementary arguments. However, the inter-
action between the unitary group and permutations acting on indices that we've
seen hinted at above will be crucial. The classical result of Schur described below
categorizes this interaction in an elegant way, and is key to the main result.

2. Representations and Schur-Weyl Duality

Both U(d) and Sn act on Cd ⊗ · · · ⊗ Cd =
(
Cd
)⊗n

in a natural way. If vk ∈
Cd, U ∈ U(d), and σ ∈ Sn, we de�ne:

U⊗n · (v1 ⊗ · · · ⊗ vn) = (Uv1)⊗ · · · ⊗ (Uvn)

σ · (v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n)

These actions are linear over C, so they induce representations of U(d) and Sn
as groups of complex matrices, formally written ρnU(d) : U(d) → End

(
Cd
)⊗n

and

ρdSn
: Sn → End

(
Cd
)⊗n

. The actions of U and σ commute, so they give a natural
combined representation ρSn×U(d).

To describe this representation, �rst we need to know about the irreducible repre-
sentations of U(d) and Sn, respectively, which are well-studied and characterized[2,
3]. For brevity we only review what is needed. For notation, we de�ne a partition

λ to be a non-increasing sequence of non-negative integers. Its length l(λ) is the
number of positive integers in the sequence, and we write λ ` n if |λ| ≡ Σiλi = n.

Fact. To each partition λ with l(λ) ≤ d there is a unique irreducible complex

representation ρλU(d) : U(d)→ V λ. The dimension dλU(d) ≡ dimC V
λ is given by

dλU(d) =
∏

1≤i<j≤d

λi − λj + j − i
j − i

To each partition λ ` n there is a unique irreducible complex representation

ρλSn
: Sn → Wλ. The corresponding characters are denoted χλ and their character

tables may be computed algorithmically via the Murnaghan-Nakayama rule[4]. As

always, dλSn
≡ dimCW

λ = χλ(e). The group algebra C[Sn] decomposes as the direct

sum

C[Sn] ∼=
⊕
λ`n

EndWλ

Now we can state Schur-Weyl duality[5]:
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Fact. Let Pn,d = {λ : λ ` n and l(λ) ≤ d}. The action of Sn × U(d) on
(
Cd
)⊗n

can be expressed by the following decomposition:

(
Cd
)⊗n ∼= ⊕

λ∈Pn,d

(
V λ ⊗Wλ

)
with ρSn×U(d) acting on the

(
V λ ⊗Wλ

)
subspace as ρλSn

⊗ ρλU(d).

Recall that the group algebra C[Sn] is de�ned to be the algebra of complex-
valued functions on Sn, with multiplication given by convolution. It is isomorphic
to the algebra of formal linear combinations of elements inSn with coe�cients in
C, with multiplication de�ned by extending group multiplication to be linear over
C. We de�ne Cd[Sn] to be the subalgebra obtained by only considering λ with
l(λ) ≤ d:

Cd[Sn] =
⊕

λ∈Pn,d

EndWλ

From Schur-Weyl duality, we can naturally interpret Cd[Sn] in yet another way�

as a subalgebra of End
(
Cd
)⊗n

, that is, complex matrices acting on vectors of the
form v1 ⊗ · · · ⊗ vn. Moving freely between these interpretations will be useful in
the next section.

3. The Main Result

In this section we prove the main result:

Theorem.ˆ

U(d)

Ui1j1 · · ·UinjnU i′1j′1 · · ·U i′nj′ndU =
∑

σ:σ(i)=i′

∑
τ :τ(j)=j′

Wg(τσ−1)

where Wg is the Weingarten function, de�ned as

Wg(σ) ≡ 1

(n!)
2

∑
λ∈Pn,d

(
dλSn

)2
dλU(d)

χλ(σ)

We begin with some more general de�nitions to illuminate the algebraic structure

to be exploited. First, note that for any A ∈ End
(
Cd
)⊗n

and any U ∈ U(d) there is

a conjugation action A 7→ U⊗nAU
⊗n

. This produces an operator acting on (linear
combinations of) vectors of the form v1⊗· · ·⊗vn by �rst multiplying by U on each
factor of the tensor product, then applying A, and �nally multiplying all resulting
factors by U . Going one step further by integrating the result over all U , we de�ne
the conditional expectation of A by

E(A) ≡
ˆ

U(d)

U⊗nA (U∗)
⊗n

dU
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The result is also in End
(
Cd
)⊗n

but it has been symmetrized in the following
sense: For any �xed U0 ∈ U(d),

U⊗n0 E(A) =

ˆ

U(d)

U⊗n0 U⊗nA (U∗)
⊗n

dU

=

 ˆ
U(d)

(U0U)⊗nA
(
(U0U)

∗)⊗n
dU

U⊗n0 = E(A)U⊗n0

where in the last equality we have used the invariance of Haar measure with respect
to the coordinate transformation U 7→ U0U . Since E(A) commutes with the action
of every unitary matrix, the Schur-Weyl theorem tells us that its U(d) piece is
trivial; it is a matrix representation arising entirely from the algebra Cd[Sn]. (This
explains the terminology �conditional expectation�� we have integrated out the U(d)
component but left a dependance on the Sn piece).

Using a similar argument based on invariance of Haar measure, one can show a
second important property: for all A, Tr(E(A)) = Tr(A).

The �nal property that we will note for future use is that for any σ ∈ Sn,

E
(
AρdSn

(σ)
)

= E(A)ρdSn
(σ), which is evident from the fact that U

⊗n
commutes

with the action of permutations σ.
Now we'll show how the conditional expectation will be reduced to the expression

de�ning a moment of U(d): Let multi-indices i, j, i′, j′ be given. De�neA,B ∈
End

(
Cd
)⊗n

in the standard basis by

A (ei1 ⊗ · · · ⊗ ein) = ei′1 ⊗ · · · ⊗ ei′n , zero for other basis vectors of
(
Cd
)⊗n

B
(
ej′1 ⊗ · · · ⊗ ej′n

)
= ej1 ⊗ · · · ⊗ ejn , zero for other basis vectors of

(
Cd
)⊗n

(Note the di�erent location of the primes). Then, denoting the columns of U by
Uk, we have

Tr (AE(B)) = Tr

A ˆ
U(d)

Uj1
(
Uj′1
)∗ ⊗ · · · ⊗ Ujn (Uj′n)∗


=

ˆ

U(d)

Ui1j1U i′1j′1 · · ·UinjnU i′nj′ndU

Recall our observation that E(B) ∈ Cd[Sn] via the injective representation in-
duced by the Schur-Weyl theorem. Thus, to �nish the theorem, we will study the

function Φ : End
(
Cd
)⊗n → Cd[Sn] given by

Φ(A) ≡
∑
σ∈Sn

[
Tr
(
AρdSn

(
σ−1

))]
σ

(Here we are treating Cd[Sn] as complex-linear combinations of the elements of Sn).
We see that Φ is compatible with the operations of Cd[Sn] since for any τ ∈ Sn,

Φ
(
AρdSn

(τ)
)

=
∑
σ∈Sn

[
Tr
(
AρdSn

(
τσ−1

))]
σ

=
∑
π∈Sn

[
Tr
(
AρdSn

(
π−1

))]
πτ = Φ (A) τ
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where π ≡ στ−1. Similarly we can show that Φ
(
ρdsn(τ)A

)
= τΦ(A).

We saw above that Tr(B) = Tr (E(B)) and E
(
BρdSn

(σ)
)

= E(B)ρdSn
(σ), so we

also have Tr
(
BρdSn

(
σ−1

))
= Tr

(
E
(
BρdSn

(
σ−1

)))
= Tr

(
E(B)ρdSn

(
σ−1

))
which,

along with the above compatibility property of Φ, gives

Φ(B) = Φ (E(B)) = E(B)Φ (id)

If we assume Φ(id) is invertible in Cd[Sn] (as we show below), this in turn allows
us to write

Φ (AE (B)) = Φ(A)E(B) = Φ(A)Φ(B)Φ(id)−1

We saw above that when A and B are de�ned properly in terms of the multi-indices
i, j, i′, j′, the coe�cient in front of the identity permutation e in this equation is the
corresponding moment on the left hand side. On the right hand side, it is obtained
by a convolution, summing over coe�cients of the three factors whose corresponding
elements of Sn multiply to e. By the de�nition of A, Tr

(
AρdSn

(
σ−1

))
= 1 whenever

σ(i) = i′and zero otherwise. Also, Tr
(
Bρdsn

(
τ−1

))
= 1 whenever τ(j′) = j and

zero otherwise, which is equivalent to being 1 when τ−1 (j) = j′ and zero otherwise.
Thus the convolution can be written as

[
Φ(A)Φ(B)Φ(id)−1

]
(e) =

∑
σ∈Sn

∑
τ∈Sn

[Φ(A)] (σ) [Φ(B)] (τ−1)
[
Φ(id)−1

]
(τσ−1)

=
∑

σ:σ(i)=i′

∑
τ :τ(j)=j′

[
Φ(id)−1

]
(τσ−1)

where we are now treating Φ(id)−1 ∈ Cd[Sn] as a function Sn → C.
To complete the proof we only need to show that Φ(id)−1 is the Weingarten

function de�ned in the theorem. To see this, �rst note that for any σ ∈ Sn we have

[Φ(id)] (σ) = Tr
(
ρdSn

(
σ−1

))
= Tr

(
ρdSn

(σ)
)

= χdSn
(σ) =

∑
λ∈Pn,d

dλU(d)χ
λ (σ)

where χdSn
(σ) denotes the character of the ρdSn

representation. The second equality

follows from the fact that ρdSn
(σ) is a permutation matrix, hence its trace is the

same as the trace of its inverse. The �nal equality is simply the apparent form of
the character given the characterization of the Schur-Weyl duality theorem. Now
multiplying in Cd[Sn] we have, by the Schur orthogonality relations for irreducible
characters,

Φ(id)Wg =
1

(n!)2

∑
λ∈Pn,d

(
dλSn

)2 (
χλ
)2

=
1

n!

∑
λ∈Pn,d

(
dλSn

)2
e = e

which completes the proof.



6 IAN WEINER

4. MATLAB Implementation

Included with this report is a MATLAB implementation of the above result.
Due to time constraints, the full algorithmic Monaghan-Nakayama rule was not
implemented; instead, the character tables for Sn were hard-coded for n ≤ 5,
permitting computation of all moments of order ≤ 10 for any d. The functions
included are:

• sdim(L,d) : computes dλU(d) for λ speci�ed by the row vector L.

• charSn(L,M) : computes χλ(µ) where λand µ are speci�ed by row vectors
L and M , respectively. µ is a conjugacy class of a permutation, speci�ed
as a partition µ ` n representing the sizes of the disjoint cycles of the
permutation. Currently requires n ≤ 5.

• getLs(n,d,m) : returns cell array representing Pn,d with optional parameter
m constraining the maximum entry of the partitions.

• Wg(M,d) : computes the Weingarten function for given d evaluated on
permutation conjugacy class speci�ed in partition form by row vector M .

• getConjClass(sigma,tau) : Computes the conjugacy class of τσ−1. Input
permutations are speci�ed by row vectors [σ(1), σ(2), . . . , σ(n)], etc. The
output is a row vector representing the partition of the conjugacy class
corresponding to disjoint cycles.

• uMoment(d,I,J,Ic,Jc) : Given dimension d and multi-indices i, j, i′, j′ spec-
i�ed by row vectors I, J, Ic, Jc respectively, computes the corresponding
moment of U(d) using the formula of the main theorem.

Example. Compute Wg(σ) for d = 3 and σ containing two length-2 cycles and
one �xed point.

>�> Wg([2 2 1],3)

ans =

-1.3558e-004

Example. Compute
´
U(6)

U1,2U1,2U3,1U2,1U2,3U3,2U1,1U1,1U2,2U2,3dU .

>�> uMoment(6,[1,1,3,2,2],[2,2,1,1,3],[3,1,1,2,2],[2,1,1,2,3])

ans =

6.6138e-006
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