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Goals

This presentation is about the paper [VGGP].
Background on Lozenge Tilings.
Lozenge tilings and symmetric polynomials.
Eigenvalues of finite dimensional GUE matrices.
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What is a Lozenge Tiling?

Start with a triangular lattice

Figure : A triangular lattice from Wikipedia

And draw a domain Ω on it
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What is a Lozenge Tiling?

Lozenge tiling : tile the domain Ω by rhombi of three types.

Figure : The lozenges. Figure from [VGGP].
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Surfaces and Lozenge Tilings

Stack unit cubes in the plane.
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Figure : This figure is taken from [Ok]

And look straight down (in the (1, 1, 1) direction).
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Old Results for Stepped Surfaces/Tilings

Assume the step surfaces are uniformly distributed.
Take the limit as the box size goes to zero.
You get a “limit shape”

Figure : This figure is taken from [VGGP].

Result: Left-most horizontal lozenges are distributed
according to GUE eigenvalues
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Combinatorics and Lozenge Tilings

You can encode Ω combinatorially.
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Figure : This figure is taken from [VGGP].

λ = (λ1, . . . , λN) is a signature when λ1 ≥ λ2 ≥ · · · ≥ λN .
The signature λ encodes the domain Ωλ.
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Why encode it like this?

We let Υλ denote a uniform random tiling of Ωλ.
Υk
λ is the distribution of horizontal lozenges on k-th vertical

line from the left.
Removing lozenges in λ is removing lozenges that are
deterministic.
Signatures λ have significance for symmetric polynomials.
A symmetric polynomial is a polynomial unchanged by
permuting variables.
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Symmetric Polynomials

There is a basis for symmetric polynomials: Schur functions

They are parameterized by signatures λ:

sλ(u1, . . . , uN) =
det

[
uλj+N−j

i

]N
i ,j=1∏

i<j(ui − uj)
.

Since they form a basis, we can define an inner product where
they form an orthonormal basis

〈sλ, sµ〉 = δλ,µ.
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Symmetric Polynomials

For our purposes we will also need the skew Schur functions.

Given two partition λ, µ, the skew Schur function sλ/µ is the
unique symmetric function that satisfies

〈sλ/µ, sν〉 = 〈sλ, sµsν〉,

for all partitions ν.
We will also need normalized Schur functions:

Sλ(x1, . . . , xk ; N, 1) =
sλ(x1, . . . , xk ,

N−k︷ ︸︸ ︷
1, . . . , 1)

sλ(1, . . . , 1︸ ︷︷ ︸
N

)
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Asymptotics

As it turns out the distribution of Υk
λ is given by:

P
(

Υk
λ = η

)
=

sη(1k)sλ/η(1N−k)

sλ(1N)
,

where 1k = (1, . . . , 1).

Asymptotics of Schur polynomials =⇒ Asymptotics of Υk
λ.
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Main Results

Theorem ([VGGP])
Let λ(N), N = 1, 2, . . . be a sequence of signatures. Suppose that
there exist a non-constant piecewise-differentiable weakly
decreasing function f (t) such that

N∑
i=1

∣∣∣∣λi (N)

N − f
( i

N

)∣∣∣∣ = o(
√

N),

as N →∞ and also supi ,N |λi (N)/N)| <∞. Then for every k as
N →∞ we have

Υk
λ(N) − NE (f )√

NS(f )
→ GUEk

in the sense of weak convergence
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Comments

E (f ) =

∫ 1

0
f (t) dt, S(f ) =

∫ 1

0
f (t)2 dt−E (f )2+

∫ 1

0
f (t)(1−2t) dt.

S(f ) is always positive when we consider weakly decreasing
functions f (t). f encodes geometric information about the turning
point and the curvature of the limit shape at that point.
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Method of proof

The trick will be to look at the moment generating function
of Υk

λ(N).
Multivariate Bessel functions

Bk(x ; y) =
deti ,j=1,...,k

(
exp(xi yj)

)
∏

i<j(xi − xj)
∏

i<j(yi − yj)

∏
i<j

(j − i).

EBk(x ; Υk
λ + δk) is the moment generating function of Υk

λ.
δk = (k − 1, k − 2, . . . , 0), for k = 1 we see
EBk(x ; Υk

λ + δk) = E exp(xΥ1
λ)

All we want to show then is that

EBk(x ; Υk
λ(N) + δk)→ EBk(x ;GUEk),

for all x in a neighborhood of (0, . . . , 0).
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