
ASYMPTOTICS OF RANDOM LOZENGE TILINGS

ASAD LODHIA

Abstract. This report is an exposition on the results that appear in
the paper [VGGP]. We introduce the concept of a lozenge tiling, and
state a few previous results in the field. We explain the relationship be-
tween random lozenge tilings and the asymptotics of certain symmetric
polynomials, along with their ultimate connection to the eigenvalues of
a finite dimensional GUE matrix.

1. Introduction and Previous Results on Lozenge Tilings

Let Ω be a domain drawn on the regular triangular lattice. A lozenge
tiling is a tiling of the domain Ω by rhombi of three types. Each of these
rhombi is a union of two adjacent triangles of the lattice (see Figure 1).

There is a correspondence between a lozenge tiling of a domain and a
“stepped surface.” A stepped surface is a piecewise linear surface in R3 that
is formed from integer translates of the sides of a unit cube. By projecting
this stepped surface along the (1, 1, 1) direction, we recover a lozenge tiling
(see Figure 2). If the stepped surface spans a boundary curve in R3 we
recover a lozenge tiling on a domain Ω determined by the curve [Ke].

We may consider a probability measure on the space of these stepped
surface as follows [OR1]. Let π be a stepped surface, and let vol(π) denote
the volume enclosed by the surface — this can be defined up to an additive
constant. We define

P(π) =
1

Z(q)
qvol(π),

where q > 0 is a parameter and

Z(q) =
∑
π

qvol(π),

is the normalization constant. We are interested in the limit that q → 1:
this is the case of uniformly distributed stepped surfaces (we approach con-
structing a uniform measure in this round-about way because if the region
that we are constructing a stepped surface is unbounded, Z(q) is finite only
when q < 1). Also, we require that the limit q → 1 is taken also with a
rescaling of the mesh size of the lattice.

Figure 1. The 3 types of lozenges, the middle one is called
“horizontal”. This figure is taken from [VGGP].
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Figure 2. An example of a stepped surface, note the clear
correspondence with a lozenge tiling. This figure is taken
from [Ok].

Figure 3. A sample from uniform distribution on tilings of
40 × 50 × 50 hexagon and corresponding theoretical frozen
boundary. The three types of lozenges are shown in three
distinct colors. This figure is taken from [VGGP].

A famous result in the theory of random surfaces, is that in the limit
as q → 1, the stepped surface model above exhibits what is known as a
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Figure 4. Lozenge tiling of the domain encoded by signa-
ture λ (left panel) and of corresponding polygonal domain
(right panel highlighted in blue). This figure is taken from
[VGGP].

“limit shape phenomenon.” That is, as we take a random stepped surface
on a lattice with mesh size shrinking, the random surface will grow closer
to a fixed non-random surface. This should be viewed as a sort of “law
of large numbers,” for random surfaces. In particular, the stepped surfaces
converge to a shape that has an ordered phase and a disordered phase with a
boundary (the “limit shape”) that separates them [Ke],[OR1]. In the case of
a hexagonal domain Ω, the limit shape is an inscriped ellipse — for general
polygonal domains the shape ends up being an inscribed algebraic curve (see
Figure 3).

2. Combinatorics of Lozenge Tilings

We may encode a lozenge tiling of a domain in the following way (Figure
4 will be the reference for what follows). We compute the width of the
domain by counting the total number N of horizontal lozenges that span
from left to right of the domain. This can be done by imagining a vertical
line passing through the center of each horizontal lozenge; we will count the
total number of distinct vertical lines that is produced in this process as the
width. Note that the left-most vertical line will intersect only one horizontal
lozenge, while the second vertical line from the left intersects exactly two
horizontal lozenges; it will follow that the k-th vertical line from the left
intersects exactly k horizontal lozenges. In the figure, we see that the width
N = 5.
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The other piece of information needed to encode the tiling is N integers
µ1 > µ2 > · · · > µN which represent the positions of the horizontal lozenges
sticking out of the right edge of the domain — these are simply a set of
coordinates for the lozenges on the right hand side. For example in the
figure µ1 = 9, µ2 = 7, µ3 = 6, µ4 = 2, and µ5 = 1, where we have started
the coordinates from the bottom with increasing values upward (we can shift
these values any way we like by a translation). If we rewrite µi = λi+N − i,
then λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ) is what is known as a signature of size
N — which is a non-increasing sequence of integers of length N . Following
our convention for µi in the figure, we have λ1 = 5, λ2 = 4, λ3 = 4,
λ4 = 1, and λ5 = 1. The domain is encoded by λ in the following way: we
take the right-most horizontal lozenges on the diagram (whose positions, by
construction, are given by λ) and remove all of them and those horizontal
lozenges positioned near them due to boundary conditions — see the right
hand side of 4 for an example.

We will denote domains encoded by a signature λ by Ωλ. Further, we
will let Υλ be a uniformly distributed random variable whose values are
random tilings of the domain Ωλ (there are finitely many such tilings so
the distribution is well defined). Note that in our definition of Ωλ, we
removed all horizontal lozenges which were present deterministically due to
the horizontal lozenges on the right with position specified by λ.

We now divert to discuss the combinatorics of signatures and partitions.
A partition λ is a collection of non-negative numbers λ1 ≥ λ2 ≥ · · · , such
that

∑
i λi <∞. A partition is also known as a Young diagram (we form a

diagram by first creating a row of λ1 squares side-by-side then directly below
this row, starting from the left we draw λ2 squares, etc. . . ). These objects
have significance in the representation theory of the symmetric group Sn
(the symmetric group is the collection of all permutations of the integers
{1, . . . , n}).

Recall that a representation of a group G is a homomorphism ρ : G →
GL(V ) where V is some vector space. A representation ρ is irreducible if V
is not trivial (i.e not {0}) and the only subspaces of V that are mapped to
themselves under the action of every ρ(g) are {0} and V itself. In matrix
notation this means that not all of the ρ(g) can be decomposed into block
matrices of the same form. Given a representation ρ, we define the character
χ(g) of an element g ∈ G to be Tr(ρ(g)) — note that this does not depend
on the basis chosen to write the matrix ρ(g). Notationally speaking, a
representation is also simply denoted by V , the vector space in question,
and ρ can be omitted so that gv = ρ(g)v for all g ∈ G and v ∈ V .

The characters of a representation give information about the group. For
example in the case of the symmetric group Sn, if we take what is known as
the defining representation i.e. the representation in which we match each
permutation to its corresponding permutation matrix, then the character of
an element tells us about the number of fixed points of the permutation (the
number of ones on the diagonal is the trace and it is the number of fixed
points). Further, for Sn the set of irreducible representations corresponds
to the number of partitions λ1 ≥ λ2 ≥ · · · , such that

∑
i λi = n [Sa].
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We will denote the set of all signatures of size N as GTN . Note signatures
λ ∈ GTN are in correspondence with strict signatures µ1 > µ2 > · · · > µN
by the mapping µi = λi +N − i (this was the mapping we used previously).

Signatures are also useful in the study of the representations of other
groups. In particular, the unitary group U(N) has its irreducible repre-
sentations Vλ parameterized by λ ∈ GTN . The character of an irreducible
representation Vλ of U(N) for a unitary matrix with eigenvalues u1, . . . , uN
are given by Schur functions:

sλ(u1, . . . , uN ) =
det
[
u
λj+N−j
i

]N
i,j=1∏

i<j(ui − uj)
.

Notice that the denominator in the above function is a Vandermonde deter-
minant, and that the function sλ is symmetric in its variables (this means if
we permute the variables we leave the function unaffected). Schur functions
will have particular significance in what follows, so it will be necessary to
introduce the following normalized Schur function:

Sλ(x1, . . . , xk;N, 1) =
sλ(x1, . . . , xk,

N−k︷ ︸︸ ︷
1, . . . , 1)

sλ(1, . . . , 1︸ ︷︷ ︸
N

)
.

To conclude this section we will define one more necessary operation.
Given two Young diagrams µ and λ such that µ ⊂ λ in the sense that µ can
be drawn inside of λ. The skew shape is the diagram λ/µ which is obtained
by cutting out the squares of µ that can be contained in λ the squares that
are left over from λ form the skew shape. Using the Schur function sλ and
sµ we can define a skew Schur functions from the skew shape: sλ/µ. The
way this is defined is by noting first that the Schur functions form a basis
for the space of all symmetric functions. Then, we define an inner product
that make sλ, λ ∈ GTN an orthonormal basis:

〈sλ, sµ〉 = δλ,µ,

we define sλ/µ to be the unique symmetric function that satisfies

〈sλ/µ, sν〉 = 〈sλ, sµsν〉
for all partitions ν ∈ GTN [M].

3. Statement of the Results

The paper [VGGP] analyzes the local behavior of lozenge tilings near a
turning point of the frozen boundary, which is the point where the frozen
region is tagent to the boundary of the domain.

Using the notation of the previous section, we will let Ωλ denote the
domain encoded by λ ∈ GTN and define Υλ to be a uniformly random
lozenge tiling of the domain Ωλ. We let ν1 > ν2 > · · · > νk denote the
coordinates of the horizontal lozenges at the kth vertical line from the left
of our turning point. Using the mapping from the previous section we turn
ν into a signature νi = κi + k − i and we obtain a random signature κ of
size k, which we will represent with the variable Υk

λ.
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There is a relationship between the Schur functions defined in the previous
section and the distribution of Υk

λ which is given in the proposition below.

Proposition 3.1. The distribution of Υk
λ is given by:

P
(

Υk
λ = η

)
=
sη(1

k)sλ/η(1
N−k)

sλ(1N )
,

where sλ/η is the skew Schur polynomial.

Remark. The notation 1k denote the k-tuple (1, . . . , 1).
From this proposition it is clear that we should suspect that by know-

ing the asymptotics of Schur functions, we will be able to determine the
asymptotics of Υk

λ in the limit that N →∞.
A k × k GUE random matrix X is a probability measure on the space of

Hermitian matricies whose density is proportional to exp(−Tr(X2)/2). We
will denote GUEk as the distribution of k ordered eigenvalues of the GUE
matrix. We have the following result on the asymptotics of Υk

λ.

Theorem 3.2 ([VGGP]). Let λ(N) ∈ GTN , N = 1, 2, . . . be a sequence of
signatures. Suppose that there exist a non-constant piecewise-differentiable
weakly decreasing function f(t) such that

N∑
i=1

∣∣∣∣λi(N)

N
− f

(
i

N

)∣∣∣∣ = o(
√
N),

as N → ∞ and also supi,N |λi(N)/N)| < ∞. Then for every k as N → ∞
we have

Υk
λ(N) −NE(f)√

NS(f)
→ GUEk

in the sense of weak convergence, where

E(f) =

∫ 1

0
f(t) dt, S(f) =

∫ 1

0
f(t)2 dt− E(f)2 +

∫ 1

0
f(t)(1− 2t) dt.

Remark. For any non-constant weakly decreasing f(t) we have S(f) > 0.
The paper [VGGP] obtained the following asymptotics of the Schur func-

tion as an application of the method of steepest descent.

Proposition 3.3 ([VGGP]). Suppose that f(t) is piecewise-differentiable,
λ(N) ∈ GTN ,

sup
j=1,...,N

∣∣∣∣λj(N)

N
− f

(
j

N

)∣∣∣∣ = O(1),

and

1√
N

N∑
j=1

∣∣∣∣λj(N)

N
− f

(
j

N

)∣∣∣∣→ 0,

as N →∞. Then for any h ∈ C,

Sλ(N)(e
h/
√
N ;N, 1) = exp

(√
NE(f)h+

1

2
S(f)h2 + o(1)

)
as N →∞, where E(f) and S(f) are as defined in Theorem 3.2. Moreover,
we have that the remainder o(1) is uniform over h belonging to compact
subsets of C\0.
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Remark. This result is a combination of propositions 4.3 and 4.5 from
[VGGP]. In proposition 4.3, only h ∈ R was dealt with; proposition 4.5
generalized the result to h ∈ C.

In order to link the asymptotics of Υk
λ(N) with the Schur functions we

need to define the multivariate normalized Bessel functions Bk(x; y), x =
(x1, . . . , xk), y = (y1, . . . , yk)

Bk(x; y) =
deti,j=1,...,k

(
exp(xiyj)

)
∏
i<j(xi − xj)

∏
i<j(yi − yj)

∏
i<j

(j − i).

The necessity of the normalized Bessel function is in the following result

Proposition 3.4 ([VGGP]). Let φN = (φN1 ≥ φN2 ≥ · · · ≥ φNk ), N =
1, 2, . . . be a sequence of k-dimensional random variables. Suppose that there
exists a random variable φ∞ such that for every x = (x1, . . . , xk) in a neigh-
borhood of (0, . . . , 0) we have

lim
N→∞

EBk(x;φN ) = EBk(x;φ∞).

Then φN → φ in the sense of weak convergence of random variables.

Remark. The above result amounts to a convergence of moment generating
functions, as will be seen below.

The condition given in Proposition 3.4 is what will be used to obtain the
weak convergence result of Theorem 3.2. We may see this by the following
propositions

Proposition 3.5 ([VGGP]). For λ = λ1 ≥ λ2 ≥ · · · ≥ λk ∈ GTk we have

sλ(ex1 , . . . , exk)

sλ(1k)

∏
i<j

exi − exj
xi − xj

= Bk(x1, . . . , xk;λ1 + k − 1, λ2 + k − 2 . . . , λk)

Proposition 3.6 ([VGGP]). We have

EBk(x; Υk
λ + δk) =

sλ(ex1 , . . . , exk , 1N−k)

sλ(1N )

∏
1≤i<j≤k

exi − exj
xi − xj

,

where δk = (k − 1, k − 2, . . . , 0)

Remark. The expression EBk(x; Υk
λ+δk) is the moment generating function

of Υk
λ. This becomes clearer for k = 1 where EBk(x; Υk

λ) = E exp(xΥ1
λ).

Thus from these results we need to compute

EBk(x;GUEk),

and compare with the limit of EBk(x; Υk
λ(N) + δk) as N →∞. If we use the

asymptotics for Schur functions in Proposition 3.3 along with the previous
two propositions, and if we carry out a matrix integral for EBk(x;GUEk)
we obtain

EBk(x;GUEk) = exp

(
1

2
(h21 + · · ·+ h2k)

)
= lim

N→∞
EBk(x; Υk

λ(N) + δk),

which yields the required result: Theorem 3.2.
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