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» Let M be any orthogonal random matrix, xg be a fixed vector
on the unit sphere in the n-dimensional space. What cay we
say about Mxp?
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Introduction

» Let M be any orthogonal random matrix, xg be a fixed vector
on the unit sphere in the n-dimensional space. What cay we
say about Mxp?

» Mpxg is uniformly distributed on the unit sphere. (well known)

» Without loss of generality, we fix xp at the " North Pole”,
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» If M is applied to xg twice, do we have the same conclusion?
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» If M is applied to xg twice, do we have the same conclusion?

» Marzetta Hassibi and Hochwald first notice this is not trival.
In their 2002 paper, they report M?xq may no longer obey the
uniform distribution.
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» Marzetta Hassibi and Hochwald first notice this is not trival.
In their 2002 paper, they report M?xq may no longer obey the
uniform distribution.

» Numerical experiment shows in R3, M?xq has a higher
probability for sitting arround the xq, P[x,M?xo > 0] > %
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Introduction

» If M is applied to xg twice, do we have the same conclusion?

» Marzetta Hassibi and Hochwald first notice this is not trival.
In their 2002 paper, they report M?xq may no longer obey the
uniform distribution.

» Numerical experiment shows in R3, M?xq has a higher
probability for sitting arround the xo, P[x;M2xo > 0] > 1.

» What is the probability density function for the random
variable x(’)l\/lkxo in any n-dimensional space?
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Methodology

» Random Matrix M is generated by the QR factrolization of
some n x n random matrix.
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Methodology

» Random Matrix M is generated by the QR factrolization of
some n x n random matrix.

» The direction of each column vector of M is again randomized
by multiplying 1 or —1 to avoid bias in MATLAB.
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Numerical Results

Methodology

» Random Matrix M is generated by the QR factrolization of
some n x n random matrix.

» The direction of each column vector of M is again randomized
by multiplying 1 or —1 to avoid bias in MATLAB.

» The e; component (or say x component) of M*xq is x)M¥xq.
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Numerical Results

MZ2x, tends to sit closer to the " North Pole”, xp.
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M3xq has higher density




Numerical Results

P,[xM?xo > 0]

Dimension n 3 4 5 6
Pn[X6M2X0>0] 0.707 | 0.682 | 0.664 | 0.651

Dimension n 8 10 20 100
IP’,,[X(’JI\/I2X0>O] 0.632 | 0.619 | 0.586 | 0.540

Table: The probabilities P,[x;M?xy > 0] in different dimension n.
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Distribution of xjMxg

» Define V) = x(’)l\/lkxo.
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Distribution of xjMxg

» Define V) = x(’)l\/lkxo.
» Vj is equal to the entry M;; on the upper left corner of the
random orthogonal matrix M. For dimension n > 3, M121

should obey the Beta distribution with o = % and g = ”;1.
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Theoretical Results

Distribution of xjMxg

» Define V) = x(’)l\/lkxo.
» Vj is equal to the entry M;; on the upper left corner of the
random orthogonal matrix M. For dimension n > 3, M121

should obey the Beta distribution with o = % and g = ”;1.

» M1 and —Mjq should have the same distribution due to the
symmetry, the probability density function of V; is,

(1 _X2)(n—3)/2’ (1)

while x ranges in —1 < x <1 and I is the gamma function.
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Theoretical Results

Distribution of x;M?xg

» We will partition the matrix M into the following parts,
My My >
M = , 2
( M1 Moo (2)

where Mll € [—]_’ 1], [\/]12 c [_1,1]1><(n71),
Moy € [—1,1](" 1%L and My, € [—1,1](n=Dx(n-1),
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Theoretical Results

Distribution of x;M?xg

» We will partition the matrix M into the following parts,
Mi1 My >
M = , 2
( Moy Mao (2)
where My € [—]_’ 1], My, € [_1,1]1><(n71),
My € [-1,1]("=1DX1 and My, € [—1,1](n~Dx(n=1),

» Then V5, can be written as,

Vo = xtM?xg = M2, 4+ Mia Moy, (3)
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Theoretical Results

Distribution of x;M?xg

» We can further present V5 as,

Mo Moy

_ N2 2
Vo = Mll + (1 - Mll)(l _ M121)1/2 (1 - M121)1/2' (4)
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Theoretical Results

Distribution of x;M?xg

» We can further present V5 as,

Mo Moy

_ N2 2
Vo = Mll + (1 - Mll)(l _ M121)1/2 (1 - M121)1/2' (4)

» The motivation for doing this is to normalize both My and
. Mo Mpy
M1 into norm one, so that the part A=M2)72 =My
the equation above can be seen as an inner product of two
unit vectors in R("=1).

5 in
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Theoretical Results

Distribution of x;M?xg

Let T and A be two fixed n x n orthogonal matrices, which has

the form
1 0 1 0
ﬂ—<0 ﬂ1>’A_<O A1>’ ()

while My and A; are (n — 1) x (n — 1) orthogonal matrices. Then,

AMA — <1 0 > (Mll M12> <1 0 > . < M1 Mo Ay >
0 My) \May My \0 A MMy MMy )"
(6)
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Theoretical Results

Distribution of xjMxg

Due to the properties of orthogonal matrices, M and NNMMA should
share the same distribution. This is because that the elements in
O, is one-to-one corresponding to the elements in NO,A, while
O, is the group of n x n orthogonal matrices. Then V5 can also be
expressed in the following way,

Vo = xgMMATNM Axq (7)
M2 Moy

— M2 2
= My + (1= M) s g e ©)
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Distribution of xjMxg

Mo M>q
— N\ ——.
(1— M)/ (1 — Mm3)1/2

Notice that this equation holds for all fixed Ay and ;. Thus, for
any random orthogonal matrices A; and [y, it should still hold,
since M and NMMA have the same distribution. Then we can choose
A1 and [1; to be independent uniform on (9(,,_1), so that Ay is
again uniform on O(,_y).

Vo = My + (1 — Mf))
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Theoretical Results

Distribution of xjMxg

Let u= iz and v = As we already stated above,

M Moy
(1-M7) (1-Mmg)L/2-
v’ and v are both unit vectors in R(""1), Then apply the following
lemma, we can conclude that, the probability density function for

M2 May
M2 A2
(1= M2 (1 = M2
must be f,_1(-), as we defined in calculating V;.

Lemma. If u and v are fixed unit vectors in R”, and @ is uniform
on O, then the density function for v/ Qv is fp(-).
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Theoretical Results

Distribution of xjMxg

In the n dimensional space, for M be uniform distributed random
orthogonal matrices, V, = x(’,l\/lzxo behaviors as,

Vo=T+(1-T)Y,

where T and Y are two independent random variables.
Furthermore, T obeys to the Beta distribution with parameters
a= % and g = ”51, and the random variable Y has density
function £, satisfying
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