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Introduction

I Let M be any orthogonal random matrix, x0 be a fixed vector
on the unit sphere in the n-dimensional space. What cay we
say about Mx0?

I Mx0 is uniformly distributed on the unit sphere. (well known)

I Without loss of generality, we fix x0 at the ”North Pole”,

x0 =


1
0
...
0

 .
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Introduction

I If M is applied to x0 twice, do we have the same conclusion?

I Marzetta Hassibi and Hochwald first notice this is not trival.
In their 2002 paper, they report M2x0 may no longer obey the
uniform distribution.

I Numerical experiment shows in R3, M2x0 has a higher
probability for sitting arround the x0, P[x ′0M

2x0 > 0] > 1
2 .

I What is the probability density function for the random
variable x ′0M

kx0 in any n-dimensional space?
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Methodology

I Random Matrix M is generated by the QR factrolization of
some n × n random matrix.

I The direction of each column vector of M is again randomized
by multiplying 1 or −1 to avoid bias in MATLAB.

I The e1 component (or say x component) of Mkx0 is x ′0M
kx0.
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n = 3, k = 1

Mx0 uniformly distributes on the unit sphere in R3.
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n = 3, k = 2

M2x0 tends to sit closer to the ”North Pole”, x0.
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n = 3, k = 3

M3x0 has higher density in both polar regions.
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Pn[x
′
0M

2x0 > 0]

Dimension n 3 4 5 6

Pn[x ′0M
2x0 > 0] 0.707 0.682 0.664 0.651

Dimension n 8 10 20 100

Pn[x ′0M
2x0 > 0] 0.632 0.619 0.586 0.540

Table: The probabilities Pn[x ′0M
2x0 > 0] in different dimension n.
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Distribution of x ′0Mx0

I Define Vk = x ′0M
kx0.

I V1 is equal to the entry M11 on the upper left corner of the
random orthogonal matrix M. For dimension n ≥ 3, M2

11

should obey the Beta distribution with α = 1
2 and β = n−1

2 .

I M11 and −M11 should have the same distribution due to the
symmetry, the probability density function of V1 is,

fn(x) =
Γ(n2 )

Γ(12)Γ(n−12 )
(1− x2)(n−3)/2, (1)

while x ranges in −1 ≤ x ≤ 1 and Γ is the gamma function.
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Distribution of x ′0M
2x0

I We will partition the matrix M into the following parts,

M =

(
M11 M12

M21 M22

)
, (2)

where M11 ∈ [−1, 1], M12 ∈ [−1, 1]1×(n−1),
M21 ∈ [−1, 1](n−1)×1 and M22 ∈ [−1, 1](n−1)×(n−1).

I Then V2 can be written as,

V2 = x ′0M
2x0 = M2

11 + M12M21, (3)

Yi Zeng North Pole Problem in Random Orthogonal Matrices
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Distribution of x ′0M
2x0

I We can further present V2 as,

V2 = M2
11 + (1−M2

11)
M12

(1−M2
11)1/2

M21

(1−M2
11)1/2

. (4)

I The motivation for doing this is to normalize both M12 and
M21 into norm one, so that the part M12

(1−M2
11)

1/2
M21

(1−M2
11)

1/2 in

the equation above can be seen as an inner product of two
unit vectors in R(n−1).
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Distribution of x ′0M
2x0

Let Π and ∆ be two fixed n × n orthogonal matrices, which has
the form

Π =

(
1 0
0 Π1

)
,∆ =

(
1 0
0 ∆1

)
, (5)

while Π1 and ∆1 are (n − 1)× (n − 1) orthogonal matrices. Then,

ΠM∆ =

(
1 0
0 Π1

)(
M11 M12

M21 M22

)(
1 0
0 ∆1

)
=

(
M11 M12∆1

Π1M21 Π1M22∆1

)
.

(6)
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Distribution of x ′0Mx0

Due to the properties of orthogonal matrices, M and ΠM∆ should
share the same distribution. This is because that the elements in
On is one-to-one corresponding to the elements in ΠOn∆, while
On is the group of n× n orthogonal matrices. Then V2 can also be
expressed in the following way,

V2 = x ′0ΠM∆ΠM∆x0 (7)

= M2
11 + (1−M2

11)
M12

(1−M2
11)1/2

∆1Π1
M21

(1−M2
11)1/2

. (8)
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Distribution of x ′0Mx0

V2 = M2
11 + (1−M2

11)
M12

(1−M2
11)1/2

∆1Π1
M21

(1−M2
11)1/2

.

Notice that this equation holds for all fixed ∆1 and Π1. Thus, for
any random orthogonal matrices ∆1 and Π1, it should still hold,
since M and ΠM∆ have the same distribution.Then we can choose
∆1 and Π1 to be independent uniform on O(n−1), so that ∆1Π1 is
again uniform on O(n−1).
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Distribution of x ′0Mx0

Let u = M12

(1−M2
11)

1/2 and v = M21

(1−M2
11)

1/2 . As we already stated above,

u′ and v are both unit vectors in R(n−1). Then apply the following
lemma, we can conclude that, the probability density function for

M12

(1−M2
11)1/2

∆1Π1
M21

(1−M2
11)1/2

must be fn−1(·), as we defined in calculating V1.
Lemma. If u and v are fixed unit vectors in Rn, and Q is uniform
on On, then the density function for u′Qv is fn(·).
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Distribution of x ′0Mx0

In the n dimensional space, for M be uniform distributed random
orthogonal matrices, V2 = x ′0M

2x0 behaviors as,

V2 = T + (1− T )Y ,

where T and Y are two independent random variables.
Furthermore, T obeys to the Beta distribution with parameters
α = 1

2 and β = n−1
2 , and the random variable Y has density

function f Yn satisfying

f Yn (x) = fn−1(x) =
Γ(n−12 )

Γ(12)Γ(n2 − 1)
(1− x2)(n−4)/2.
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