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1 Introduction

Given a graph G with n vertices, its adjacency matrix A(G) is the n× n matrix whose (i, j) entry is 1
if vertices i and j are adjacent, and 0 otherwise. The eigenvalues of the graph G are defined to be the
eigenvalues of A(G). The collection of eigenvalues of G are also known as the spectrum of G. In this
project, we investigate the empirical eigenvalue distribution (ESD) of a random graph.

In class, we considered ensembles of random matrices where the entries of the matrix are indepen-
dent and identically distributed. We are often interested in the limit of the ESD as n→∞. The most
famous result of this type is Wigner’s semicircle law [8, 9]. The random matrices in Wigner’s setup
correspond to random graphs where each possible edge appears independently with some probability
p. This random graph is denoted G(n, p), and it was first studied in the seminal paper of Erdős and
Rényi [2]. If p were held constant as n grows, then the setup is equivalent to Wigner’s random ma-
trix setting. However, in graph theory, we are often interested in cases where p decreases with n. In
Section 2, we discuss some results and observations relating to the limiting ESD of G(n, p).

In Section 3, we consider another model of random graphs. A d-regular graph is a graph where
every vertex has degree d. Let Gn,d denote a random d-regular graph on n vertices, chosen uniformly
at random from all d-regular graphs on n labeled vertices1. Unlike the Erdős-Rényi random graph, the
edges of Gn,d are not independent. It turns out that if d is fixed, then the limiting ESD of Gn,d is not the
semicircular distribution. McKay [4] determined the limiting ESD for each d. Very recently, Tran, Vu,
and Wang showed that if d increases with n, then the limiting ESD of Gn,d does approach the semicircle
distribution. We discuss both results.

In this project, we focus on the spectral distribution of graphs. There are many other questions
about eigenvalues of random graphs that could be asked, e.g., what is the distribution of the largest
eigenvalue, and what is the distribution of the spectral gap (the difference between the top two eigen-
values). Questions about largest eigenvalues are very important in graph theory, as many important
parameters of graphs can be characterized by their largest eigenvalues and spectral gaps. The field of
spectral graph theory is dedicated to the properties of graph eigenvalues and their applications. How-
ever, we shall not explore this territory in this project.

We shall discuss the above two models of random graphs separately. In Section 2 we discuss the
Erdős-Rényi model G(n, p) and in Section 3 we discuss the random d-regular model Gn,d . We only
include sketches of proofs and refer the readers to the original papers for details. We include MATLAB
plots of the spectral distributions for both models of random graphs, as Prof. Edelman has passed to us
the wisdom that these plots can sometimes be even more convincing than the proofs.

2 Erdős-Rényi random graph

The Erdős-Rényi random graph G(n, p) is formed by taking an empty graph on n vertices and adding
each edge independently with probability p. The study of this random graph model was initiated in
the seminal paper of Erdős and Rényi [2]. In this section, we discuss the ESD of G(n, p). See Figure 1

1Note that Gn,d makes sense only when nd is even, and we shall always assume that this is the case.
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for some plots. The plots show the observed spectral distribution of the graphs after we de-mean2 and
normalize the matrices, following (1). We begin with a discussion of the case3 p = ω(1/n), where
Wigner’s semicircle law still holds. However, p = O(1/n), new phenomena begin to emerge, and we
observe a discrete component to the spectrum of the graph. In order to discuss these observations, we
will need to review the results of Erdős and Rényi about the qualitative nature of the components of
G(n, p).

We focus on the case when p ≤ 1
2

since the other case can be analyzed by taking the graph comple-
ment.

2.1 G(n, p) when p =ω(1/n)

In the case when p = ω( 1
n
) and p ≤ 1

2
, the limiting empirical spectral distribution is the semicircular

distribution. It can be proved by the method of moments, and the proof is essentially the same as that
of Wigner’s semicircle law for random matrices. We state the result and sketch an outline of the proof.
Details can be found in [1, Theorem 3.4] or [7, Appendix A].

Theorem 2.1. Assume p = ω( 1
n
) and p ≤ 1

2
. Let An be the adjacency matrix of a random graph G(n, p).

Then, as n→∞, the empirical spectral distribution of the matrix 1p
np(1−p)

An converges in distribution to

the semicircle distribution which has a density ρsc(x) with support on [−2, 2],

ρsc(x) :=
1

2π

p

4− x2.

Let
σ =

p

p(1− p)

be the standard deviation of the non-diagonal entries of A. Observe that 1
σ

An is a random matrix whose

non-diagonal entries, i < j, are binomial random variables taking value 1
p(1−p) with probability p and 0

otherwise. Note that the variance of ζi j is 1. It will be convenient to shift the entries so that the mean
is zero. Let Jn be the n× n matrix all of whose entries are 1. It is known (see [6, Lemma 39]) that
the eigenvalues of 1p

nσ
An and those of 1p

nσ
(An − pJn) interlace, so they share the same global spectral

properties, and in particular their limiting ESDs are identical. So instead of working with 1
σ

An, we
consider the de-meaned matrix

Mn =
1

σ
(An− pJn) (1)

whose non-diagonal entries ξi j , i < j, are binomial random variables with mean 0 and variance 1,

taking value 1−p
σ

with probability p and value −p
σ

with probability 1− p. Note that when p = ω( 1
n
),

�

�ξi j

�

� = o(
p

n). We can now finish the proof essentially the same way as the method of moments proof
of Wigner’s semicircle law.

2The spectrum of G(n, p) almost surely has a single eigenvalue around np, with all other eigenvalues O(pnp). By de-
meaning the matrix, we get rid of lone large eigenvalue, which makes the spectra easier to plot. The shape of the limiting
distribution remains unaffected, as explain in the paragraph before (1).

3We use the following standard asymptotic notations: as n → ∞, f (n) = O(g(n)) means that there exists some C so
that

�

� f (n)
�

� ≤ C g(n) for n sufficiently large; f (n) = o(g(n)) means that f (n)/g(n) → 0; f (n) = Ω(g(n)) means that there
exists some c > 0 so that f (n) ≥ cg(n) for n sufficiently large; f (n) = ω(g(n)) means that f (n)/g(n) → ∞; and finally
f (n) = Θ(g(n)) means that f (n) = O(g(n)) and f (n) = Ω(g(n)) simultaneously.
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Figure 1: Normalized empirical spectral distribution of G(n, α
n
) for various values of α. Taken with

n= 1000 using 100 trials.
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2.2 G(n, p) when p = α/n

When p = O( 1
n
), the empirical spectral distribution of G(n, p) no longer seems to converge to semicircle

distribution. Let us consider the case when p = α
n

and n→∞. See Figure 1 the observed (normalized)
eigenvalue distribution for G(n, α

n
) when n= 1000 and for various values of α. We make the following

observations:

1. The spectra seems to be a composition of two components: a “discrete component” consisting of
spikes, and a “continuous component.”

2. For small values of α, the discrete spectrum is dominant, and for larger values of α, the continuous
spectrum is dominant.

3. The continuous spectrum seems to be approaching a semicircle for as α gets larger.

The third point makes sense from the result in the previous section, since we know that if α → ∞,
however slowly with n, then the limiting distribution is indeed a semicircle distribution. To explain the
presence of the discrete spectra, we need some information about the structure of G(n, p), which we
discuss next.

2.3 Evolution of a random graph

One of the key results of Erdős and Rényi concerns the qualitative nature of the structure of G(n, p)
for different regimes of p. The graph breaks into a number of connected components. When p = α

n
,

with α fixed and n→∞, the size of the largest connected component has the following “double jump”
behavior:

• When p = α
n

with α < 1, almost surely all components of G(n, p) will have size O(log n), mostly
being trees.

• When p = 1
n
, almost surely the largest component of G(n, p) has size on the order of n2/3.

• When p = α
n

with α > 1, almost surely there a unique largest connected component (the gi-

ant component) of size g(α)n, where g is some continuous function satisfying g(1
2
) = 0 and

limα→∞ g(α) = 1. All other componented have size O(log n), mostly trees.

In other words, p = 1
n

is a sharp threshold for the existence of a giant component in G(n, p). It is also

known that p = log n
n

is a sharp threshold for G(n, p) being connected.
The above characterization of the structure of G(n, p) helps us to make an attempt at explaining

the spectra observed in the previous section. Note that most of these claims are speculative in nature,
as no rigorous proofs are known (although some “physicist’s proofs” exist). See the Princeton senior
thesis of Spiridonov [5] for more discussion. We recall the standard fact that the spectra of a graph can
be formed by combining (i.e., taking a multiset union) the spectra of the connected components of a
graph.

• When p = α
n

with α < 1, the spectrum is contributed entirely by trees. We should be able to
approximate the limiting ESD by computing the spectra of small trees. The dominance of trees
explains the discrete nature of the spectra.

• When p = α
n

with α > 1, there is a giant component, which contributes to the continuous compo-
nent of the spectra. There are still small connected components, mostly trees, that contribute to
the discrete component of the spectra. Also contributing to the observed discrete spectra are the
trees with one leaf vertex attached to the giant component.
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In other words, it is suspected that the discrete component of the spectra, i.e., the spikes in the
eigenvalue histograms, come from small trees. Shown in Table 1 are a number of small trees along
with their eigenvalues. The values seem to coincide with the dominant spikes in the observed spectra.
The height of the spikes depend on the α, with the smaller trees having greater contribution.

T A(T ) Eigenvalues
�

0
�

0
�

0 1
1 0

�

−1, 1







0 1 0
1 0 1
0 1 0







−
p

2, 0,
p

2
(−1.41) (1.41)











0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0











−1−
p

5
2

, 1−
p

5
2

, −1+
p

5
2

, 1+
p

5
2

(−1.62) (−0.62) (0.62) (1.62)











0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0











−
p

3, 0, 0,
p

3
(−1.73) (1.73)

Table 1: Eigenvalues of some small trees

3 Random regular graphs

In this section, we consider a different random graph model from the previous section. Recall that a
d-regular graph is a graph where every vertex has degree d. Let Gn,d be a random d-regular graph,
where we choose uniformly at random from all d-regular graphs on n labeled vertices. Note that Gn,d

and G(n, d
n−1
) have the same edge density, but a key difference is the entries of the adjacency matrix of

G(n, d
n−1
) are independent, while those of Gn,d are not.

Here is simple algorithm for generating Gn,d , which is also what we use for the numerical exper-
iments. Start with an empty graph on n vertices, and draw d “stubs” from each vertex, where each
stub is an edge with one endpoint already attached to a vertex and the other endpoint free. At each
step, glue together two uniformly random free ends of stub-edges (disallowing the gluing if this would
create a loop or a multi-edge). At the end of the process4, when there are no free ends remaining, we
obtain a random d-regular graph Gn,d .

3.1 Constant degree — McKay law

When d is fixed, and n→∞, the limiting empirical spectral distribution of is not the semicircle distri-
bution. The limiting ESDs were found by McKay [4]. These limiting distributions are sometimes known

4There is a neglibly small probability that the process gets stuck at the end when all remaining stubs eminate from the
same vertex, in which case we can just restart.
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as the Kesten–McKay distributions, as the distributions were previously discovered by Kesten [3] in the
context of random walks on groups. Note these distributions did not arise in the classical settings of
random matrix theory. See Figure 2 for some plots. As with Figure 2, the plotted spectra are demeaned
and normalized as Mn =

1p
d−1
(An−

d
n

Jn).
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Figure 2: Normalized empirical spectral distribution of a random d-regular graph Gn,d for various
values of d. Taken with n= 1000 using 100 trials.

Theorem 3.1. Let d ≥ 2 be a fixed integer. As n → ∞, the empirical spectral distribution of a random
d-regular graph on n vertices approaches

fd(x) =







d
p

4(d − 1)− x2

2π(d2− x2)
, if |x | ≤ 2

p
d − 1;

0, otherwise.

Here we give a sketch of the proof of Theorem 3.1, following the idea of the original paper of
McKay[4] but with a somewhat different combinatorial analysis. The idea is to use the method of
moments to count trees, similar to the proof of Wigner’s semicircular result.

Fix d. Let An = (ai j) denote the adjacency matrix of Gn,d . Let mk denote the k-th moment of the
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limiting ESD, so that

mk = lim
n→∞

1

n
ETr Ak

n.

Note that Tr Ak
n is the number of closed walks of length k in An. When d is fixed and n → ∞, almost

surely the graph is locally a d-regular tree. So in the limit, 1
n

Tr Ak
n is number of closed walks of length

k in an (infinite) d-regular tree starting at the root. The tree for d = 4 is shown below.

· · ·

· · · · · · · · ·

So mk is the number of closed walks in a d-regular tree starting at the root. Since the length of a
closed walk on a tree is always even, we have mk = 0 whenever k is odd. We now use techniques from
enumerative combinatorics to determine a formula (specifically, a generating function) for m2k.

In a walk of length 2k, suppose the walk returns to the root for the first time after 2(i + 1) steps,
for 0 ≤ i ≤ k− 1. The first step is a down-step to the first level (we call the root the zeroth level), and
there are d choices for the first step. Subsequently, before returning to the root, the walk takes place
below the first level. At each step it takes either a down-step (in which there are always d − 1 choices)
or it has an up-step. Between steps 1 and 2i + 1, we have a closed walk staying below the first level,
and thus the sequence of choices for up-step or down-step corresponds to a Dyck path, and the number
of such choices is the i-th Catalan number Ci . Since there are d − 1 choices for each down step, the
number of possible walks between steps 1 and 2i + 1 is Ci(d − 1)i . After the walk returns to the root
for the first time, there are now m2(k−1−i) ways to continue. So we obtain the recurrence relation

m2k = d
k−1
∑

i=0

Ci(d − 1)im2(k−1−i).

We turn this recurrence relation into a relation of generating functions in the variable y . Multiplying
by yk and summing over all y , we find that

∞
∑

k=0

m2k yk = 1+ d
∞
∑

k=1

k−1
∑

i=0

Ci(d − 1)im2(k−1−i) y
k = 1+ d y

 

∞
∑

k=0

Ck(d − 1)k yk

! 

∞
∑

k=0

m2k yk

!

.

Let

M(y) =
∞
∑

k=0

m2k yk

be the generating function for m2k. We know from the generating function of the Catalan numbers that

∞
∑

k=0

Ck(d − 1)k yk =
1−
p

1− 4(d − 1)y

2(d − 1)y
.

So we get

M(y) = 1+
d

2(d − 1)

�

1−
p

1− 4(d − 1)y
�

M(y)
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and thus

M(y) =
�

1−
d

2(d − 1)

�

1−
p

1− 4(d − 1)y
�

�−1

(2)

To show that fd(x) is indeed the limiting distribution, by the moment method, it suffices to check that

∫ 2
p

d−1

−2
p

d−1

xk fd(x) d x = mk

for all k (we can check that Carleman’s condition applies for the uniqueness of the limiting distribution).
Let Mk denote the left-hand side quantity. Then Mk = 0 for odd k since the distribution fd is symmetric
about zero. The generating function for M2k is

∞
∑

k=0

M2k yk =
k
∑

k=0

∫ 2
p

d−1

−2
p

d−1

x2k yk fd(x) d x

=

∫ 2
p

d−1

−2
p

d−1

fd(x)
1− x2 y

d x

=

∫ 2
p

d−1

−2
p

d−1

d
p

4(d − 1)− x2

2π(d2− x2)(1− x2 y)
d x

The final integral can be evaluated using the following procedure: (1) substitute x = 2
p

d − 1cosθ ;
(2) convert it to a complex contour integral along the unit circle using z = eiθ ; (3) evaluate the integral
using residue theorem. The calculation is routine but tedious, so we omit the details. The final result
of the calculation show that it is the same generating function as (2), so that Mk = mk for all k, and
thus the method of moments show that ESD of Gn,d indeed converges to fd as claimed.

3.2 Increasing degrees

In the previous section, we considered random graphs Gd,n, letting n→∞ while holding d fixed. It was
recently shown by Tran, Vu, and Wang [7] that, instead of holding d fixed, if we let d →∞, however
slowly with n, then the limiting ESD is the semicircle distribution, similar to the case of G(n, p) when
p =ω( 1

n
).

Theorem 3.2 (Tran-Vu-Wang). Let d →∞ and d ≤ n
2
. Let An be the adjacency matrix of a Gn,d , and let

σ =
Æ

d
n
(1− d

n
). Then, as n → ∞, the empirical spectral distribution of the matrix 1p

nσ
An converges in

distribution to the semicircle distribution ρsc.

We sketch just the main idea of the proof. It was shown that if d →∞, then G(n, d
n
) is d-regular with

probability at least e−O(n
p

d). This is a small probability, but it is bounded from below. We know from
Theorem 2.1 that the normalized ESD of G(n, p) approaches the semicircle distribution. What Tran,
Vu, and Wang showed is a quantitative version of this convergence. They proved a high-concentration
result showing that probability that the ESD of G(n, p) deviates, in some sense, from the semicircle
distribution is even much smaller than e−O(n

p
d), so that with high probability, a random d-regular

graph also has its ESD close to a semicircle.
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