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Chapter 1

Introduction to Wireless
Communications

1.1 The Communication Systems Mathematical Model

The communication channels model in general is consisted of three main components.

• x[t] ∈ X for t = 1, 2, · · · , T : which is the sequence of input signals to the channel
taking values in the alphabet X . The message that is to be transmitted is conveyed
in this sequence. There is also some redundancy in the representation of message
in sequence x[t] so that the communication would be robust towards the noise
and the message can be decoded at the receiver reliably (i.e., with arbitrary small
probability of error).

• y[t] ∈ Y for t = 1, 2, · · · , T : which is the sequence of output signals from the channel
taking values in the alphabet Y. This sequence would probably be different from
the input signal due to the random behavior of channel. This difference might
cause difficulty in decoding the message.

• P (y[t]|x[t]) for x[t] ∈ X and y[t] ∈ Y: The transition probability P (y[t]|x[t]) is
the stochastic model of the channel which demonstrate the distribution of output
signal for each time instant t for a given input x[t].

There are two fundamental question that arises in design and analysis of communi-
cation systems:

• What is the capacity of the given communication channel? The capacity of the
channel is defined to be the maximum amount of information that can be trans-
mitted reliably over a given channel per use of the channel. Meaning that if B bits
of information can be transmitted in a block of length T (in T times use of com-
munication channel), the rate is defined to be B/T . The capacity of the channel
is a measure of the quality of channel, meaning that if the channel is imposing too
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much randomness over the output for a given input, the recovery of the message
gets more difficult and more redundancy should be added to the input sequence
to make reliable recovery of the message feasible, the the capacity is smaller.

• How should be design the system to achieve the maximum rate? In other words,
what is the optimal encoding and decoding scheme to so that the redundancy
would help us recover the message reliably.

1.2 Point to Point Wireless Channel

In wireless communications, the communication channel is the open air and the space
between the transmitter and the receiver. Attenuation, multi-path fading and noise are
the main phenomena that affect the transmission of electromagnetic waves representing
the input signals.

The stochastic behavior of the channel is modeled as the following.

y[t] = SNRh[t]x[t] + w[t], for t = 1, · · · , T

In this model the output signal at each time is a random function of the input signal.
This function has three parameters that depend on the properties of the channel

• SNR: Signal to noise ratio in the channel measures the average ratio of the received
power from the transmitted signal versus the noise in the system. This parameter
is deterministic and quantifies the quality of the channel. Signal attenuation, the
communication environment and the distance between transmitter and receiver are
among the parameters that determine the value of SNR.

• h[t] Channel fading coefficient is the parameter that conveys the randomness of
channel mainly due to multi-path fading. Using central limit theorem, this is
usually modeled as a random complex number with Gaussian distribution, mean
zero and unit variance.

• w[t] representing the additive noise of the system is modeled as a gaussian dis-
tributed random complex number with mean zero and unit variance.

There are several limiting factors in wireless communication looking at the model
above. Input power constraint : which constraints the average power transmitted from
the transmitter at a block of time. The transmitted signal should satisfy the inequality
for some given P :

1
T

T∑
t=1

||x[t]||2 < P

Noise is another limiting factor in communication which distorts the received signal
in a random manner.
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Fading is the parameter that potentially can change the amplitude and phase of the
transmitted signal in a random manner. The coding scheme should be resilient to this
kind of randomness in the received signal. Deep fading is the phenomenon that the
coefficient h[t] has a very small magnitude and imposes a very small amplitude on the
received signal compared to the noise. In this case, we say that the signal is drowned in
noise and signal recovery is almost impossible.

1.2.1 Coherent Wireless Communication

In coherent wireless communication, the receiver has the full knowledge about the fading
coefficients and the parameter h[t] is a random number which is known at the receiver
and the transmitter. The main problem in coherent communication is distributing total
power budget in a block of length T in a way that input power constraint is satisfied
and at the same time the maximum amount of information is transmitted. Intuitively,
the smart strategy is to allocate more power to the time slots that have smaller |h[t]| so
that even though the fading is strong, (i.e.,|h[t]|2 << 1), the input power at that time
is large enough (i.e., |x[t]|2 >> 1) such that the received power, |h[t]x[t]|2, would be
sufficient to perform the decoding reliably.

1.2.2 Non-Coherent Wireless Communication

In non-coherent wireless communications, the receiver (neither the transmitter) are not
aware of the actual realization of the channel coefficients. The encoding and decoding
should be performed by using only the statistics of the coefficients.

1.2.3 Flat Fading

Flat fading is referred to the model in which the changes in channel are so slow that the
channel coefficients are assumed to be constant over each block of communications. i.e.,
h[t] = h for t = 1, 2, · · · , T .

1.3 Single-input and Multiple-output (SIMO) Communi-
cations.

In SIMO communications, there are a single transmitter, transmitting signal x[t] and
m receiver antennas collaborating with each other to decode the message. Channel
coefficients among different receive antennas are independent of each other. The com-
munication channel for each receive antenna is modeled as following.

yj [t] = hj [t]x[t] + wj [t], for t = 1, · · · , T, j = 1, · · ·m

hj [t]’s are independent of each other and each is normal distributed with mean zero
and unit variance. In vector form, we would have:
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y[t] = h[t]x[t] + w[t]

y[t] = h[t] x[t] + w[t]m

1

1.4 Multiple-input and Single-output (MISO) Communi-
cations.

In MISO communications there are n transmitting antennas and one receive antennas
which receives a linear combination of the transmitted signals from all TX antennas.
The channel is modeled as following:

y[t] =
n∑

i=1

h∗i [t]xi[t] + w[t], for t = 1, · · · , T

= h[t]Hx[t] + w[t]

y[t] = x[t]h[t]H +w[t]

n

1
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Again, hi[t]’s are assumed to be independent, jointly complex gaussian random vari-
ables with mean zero and unit variance.

1.5 Multiple-input and Multiple-output (MIMO) Commu-
nications.

In MIMO communications there are n transmitting antennas and m receive antennas
each receiving a linear combination of the transmitted signals from all TX antennas.
The channel is modeled as following:

yj [t] =
n∑

i=1

h∗i,j [t]xi[t] + w[t], for t = 1, · · · , T

y[t] = h[t]x[t] + w[t]

y[t] = x[t]h[t] + w[t]m m

1 n

In flat fading MIMO communications, the matrix h[t] is constant over a block of
communication i.e., h[t] = H for t = 1, 2, · · · , T .

y[t] = H x[t] + w[t] for t = 1, · · · , T

Y
m×T

= H
m×n

.X
n×T

+W
m×T

1.5.1 Degrees of Freedom (DOF=d)

The received signal in a block of length T in all antennas, Y ∈ Cm×T lives in a space of
complex dimension of mT . But not all these dimensions are affected by the input X.
The number of dimensions in received signal that are only affected by the input X (i.e.,
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y[1] y[2] y[3] ... y[T ] = H n

T

x[1] x[2] x[3] ... x[T ] + w[1] w[2] w[3] ... w[T ]m m

T
n

the dimension of subspace that Y lives in, fixing all parameters and changing only X)
is called the degrees of freedom of the system.

The importance of this parameter is in the fact that in high SNR regime, degrees
of freedom of the system is the pre-log factor of capacity of the system i.e., C(SNR) ≈
d logSNR

Intuitively, in high SNR regime, the constraint over the input power is not the limiting
factor. The limiting factor in communications is the number of dimensions of the received
signal that we have control over by changing and designing the input signal.
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Chapter 2

Non-coherent Flat Fading MIMO
Communications in high SNR

2.1 The Problem Description

Non-coeherent block fading communications was introduced in previous chapter. The
question that arises is that what is the degrees of freedom of the system for this setup
and how it can be achieved. Meaning that for specific statistics over the matrix H, what
is the maximum complex dimension of the matrix Y that is affected only by changing
input signal X and how should we design the probability distribution over the input
signal to achieve this degrees of freedom.

The statistics over the matrix H ∈ Cm× n is assumed IID elements, each gaussian
distributed with mean zero and unit variance.

2.2 Optimal Input Distribution

Definition: A random matrix R ∈ CM×T for T ≥ M is called isotropically distributed
(i.d.) if its distribution is invariant over rotation. i.e., for any deterministic T × T
unitary matrix Q,

p(R) = p(RQ)

.
Lemma: The input distribution that achieves capacity can be written as X = AΘ

where Θ us an M × T isotropically distributed unitary matrix, i.e., ΘΘH = I. A is an
M ×M real diagonal matrix which is independent of Θ.

The ith diagonal element of A represents the power of the signal transmitted in ith
antenna. In non-coherent high SNR capacity, it can be proved that constant equal power
input is asymptotically optimal P (A =

√
TIM ) = 1. Intuitively, since there is perfect

symmetry between statistics of each antenna, there is no reason to allocate more power
to any of them.
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2.3 Change of Coordinates

The following transform corresponds to a change of coordinates for a matrix R ∈ CM×T

(T ≥M):

CM×T → CM×M ×G(T,M)
R → (CR,ΩR)

In this transform, ΩR represents the subspace that is spanned by rows of R which is in
Grassman manifold G(T,M) Grassman manifold G(T,M) is the set of all M dimensional
subspaces of CT . CR represents the M rows vectors of matrix R with respect to the
canonical basis of ΩR.

In high SNR regime, the effect of noise in the received signal is very small and we
can study the signal Y

0
= H X instead of Y .

The subspace spanned by rows of H X is the same as the subspace spanned by rows
of X.

ΩHX = ΩX with probability 1

We could say that the fading coefficients H change X only by changing CX and leave
ΩX unchanged.

Actually, ΩX is affected only by noise whose power is very small in high SNR regime.
But CX is affected by both noise and channel fading.

We could say

I(X;Y ) = I(ΩX ;Y ) + I(CX ;Y |ΩX)
= I(ΩX ;Y )
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2.4 Channel Capacity

Theorem: If R ∈ CM×T is isotropically distributed ( i.e., ∀Q, p(R) = p(RQ)), then

h(R) = h(CR) + log |G(T,M)|+ (T −M)E[log detRR
′
]

• h(CR) + log |G(T,M)| is differential entropy of R in CM×M ×G(T,M).

• (T −M)E[log detRR
′
] is the Jacobian term for the coordinate change.

Using the above theorem, mutual information I(X;Y ) could be approximated in new
corrdinate as following:

I(X;Y ) = h(Y )− h(Y |X)

h(Y |X) = mE[log detA2] +m2 log(πe) +m(T −m) log(πeσ2)
h(Y ) ≈ h(HX)

= h(CHX) + log |G(T,M)|+ (T −m)E[log detHA2H ′]
= h(CHX) + log |G(T,M)|+ (T −m)E[log detHH ′ + log detA2]

To maximize the mutual information, it is clear that the optimal power allocation is
constant for all antennas and the information is conveyed through ΩX .

Thus, X = AΘ where P (A =
√
TIM ) = 1 and Θ is a unitary matrix with uniform

distribution over random unitary matrices in CT×T .
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Chapter 3

Non-coherent Non-Flat Fading
MIMO Communications in high
SNR

3.1 Problem Setup and Future work

The immediate generalization of the problem introduced in previous chapter concerns
non-flat fading channels. The matrix h[t] in this model is not constant and changes with
time. The parameter of interest is again the degrees of freedom of the system and the
the optimal input distribution in high SNR.

yj [t] =
n∑

i=1

hij [t]xi[t] + wj [t] for t = 1, ..., T j = 1, ...,m

i = 1, ..., n

The variation of fading coefficients for each pair of antennas in time hij [t] for t =
1, 2, · · · , T is not modeled arbitrary and independently. We assumer some correlation
or similarity between consecutive fading coefficients. Looking at the vector of fading
coefficient between a pair in time, we assume that for all i, j:

E



hij(1)
hij(2)

...
hij(T )

 [hij(1), hij(2), · · · , hij(T )]

 = KH

We would assume that the rank(KH) = Q is much smaller that Q << T , meaning
that there are only a very few independent parameters that determine the sequence of
hi,j [t]’s for t = 1, 2, · · · , T . It is worth mentioning that when Q = 1, there is flat fading
and the problem is specialized to the one given in previous chapter.
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Determining the degrees of freedom of the system for given m,n, T and Q << T and
designing the optimal input distribution is the future work in this area.
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