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Scattering Matrix

Ψin= Σ[ai*ψi]
Ψout= Σ[bj*ψj]
Ψout=S*Ψin

 
 
 
 
 
Random scattering, how could we get the number of 
states?

ai

ai'

bj'

bj



How many real eigenvalues are in a 
n by n matric?

Real eigenvalue indicates one existing state at 
equilibrium.
 
So now, we can convert the previous questions 
into:
 
How many real eigenvalues are there?



Math part

-En=sqrt(Pi)*Γ((n+1)/2)/Γ(n/2)
 
-Its asympototic series:
En=sqrt(Pi*n/2)*(1-1/4n+1/32n^2...)
 
-From here, we know that, when n is large, the expectation 
value of real eigenvalues decays at a similar rate as sqrt(n).
-Also, for even n: En=sqrt(2) Σ((4k-1)!!/(4k)!!), k=[0,n/2-1]
          for odd n:   En=1+sqrt(2)Σ((4k-3)!!/(4k-2)!!)
                             k=[1,(n-1)/2]
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Distribution of the number of real 
Eigenvalues, k

-Monte Carlo
 
-1000 trials
 
-k: array of the number of real eigenvalues for 
1000 n by n matrices.
 



k/sqrt[n], 1000 trials
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n=100 n=200

n=1



Smoothout

 



Mean,1000 trials

Mean[k/sqrt[n]]=Mean[k]/sqrt[n], n = [1,100]
 



n=[100,200], 1000 trials

 
 
 
 
 
 
 
 
About 80 points are plot.



Standard Deviation

STD[k/sqrt[n]] approaches to 0 as n goes to 
infinity.
 

100 trials with n by n matrix



500 trials 

2 lines: 
upper one for even 
number;
lower one for odd 
number



Unitary Matrix

Is there any characteristics for random unitary 
Matrix?
 
U is designed as:
U= MatrixExp[i*(R+Transpose(R))], 
where R is a random matrix.
 



Eigenvalues 

 
 
 
 
 
 
Full zeros.



Orthogonal Matrix

For a unitary matrix with all real elements, 
orthogonal Matrix is designed as:
O=MatQ= QRDecompositon[M].
 
Number of real eigenvalues is 2, which are 1 
and -1.  [n is even.]
Number of real eigenvalues is 1, which is either 
1 or -1. [n is odd.] 



10 trials
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1000 trials

 
 
 
 
 
 
 
 
 And STD are all zeros.
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RMT for scattering matrix

In the circular ensemble, 
 
for β=1, S is COE
for β=2, S is CUE
for β=4,  we do not care that much.
 
For other cases, where S is completely a random matrix, 
we could apply the previous results that as n becomes 
large enough, En is about 0.8 with a standard deviation of 
0. Hence, we can estimate the possible number states 
available before and after the scattering.
 
 



Extra slide 1

Extended table:
n=10

k P10(k)  

10 1/(4193304*sqrt(2)) 1.68*10^-7

8 (236539-320sqrt(2))/536870912sqrt
(2)

3.1*10^-4

6 / 0.0444***

4 / 0.421***

2 (1216831949-594932556sqrt(2))
/536870912*sqrt(2)

0.49

0 -1146637039+834100651sqrt(2)
/526870912sqrt(2)

0.043



Extra slide 2

Extended table:
n=11

k P11(k)  

11 1/(134217728*sqrt(2)) 5.27*10^-9

9 (-320+333123sqrt(2))
/8589934592sqrt(2)

3.87*10^-5

7 / 8.9*10^-3***

5 / 0.2102***

3 / 0.5818***

1 -12606311702+106298452511sqrt
(2)/8589934592sqrt(2)

0.1997
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