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1 Introduction 

 

Mathematical control theory is the area of mathematics and deals 

with the principles underlying the analysis and design of control systems. 

Control systems themselves are broadly defined as systems whose 

functions are to influence an object’s behavior in order to achieve a 

desired goal. 

 

The two main branches of control theory are optimization and 

uncertainty. The problem with which this paper is mainly concerned is 

one of optimization—that is, formulating an equation or algorithm that 

accomplishes our goal most efficiently. The system we seek to optimize 

in this paper is a networked control system that is experiencing delays 

due to network traffic. Our claim is that by exploring patterns that arise 

in these random time delays, we can find an equivalence with the random 

Fibonacci recurrence, and that we can exploit this equivalence to draw 

further conclusions about control systems. 

 

This problem has been previously explored by Kalmár Nagy, [4] 

who first posited that a single jump linear control system and a random 

walk on a self-similar graph whose vertices are the visible points of a 

plane are equivalent. This paper will walk through this finding and 

elaborate a bit on the results. 

 

 

2 Natural occurrence of jump linear patterns in linear control 

systems 
 

 We claim that linear control systems with random time delay 

follow a jump linear pattern; therefore, we must show why this pattern 

arises naturally in these systems. 

 

 To do this, we consider a basic model of a linear control system 

with random actuator delays due to communication over a network. Our 

control system follows the standard state space equations: 

 

 ẋ= Ax + Bu 

 y = Cx, 

 



2 

 

 with our state evolving continuously. We are assuming here that 

our control signal is proportional to our output, and our sampling time ds 

(as seen on graph below) specifies the time instants si = ids. 

 

 Our terms of interest here are x(t) (our overall state at a given 

time), and u (our control input). 

 

 
 

Graph of random actuation time delays. [4] 

 

 We want our actuation times to be the same as our sampling 

times, but this occurs only in an ideal model. Once we factor in network 

delays, we must re-express our time as: 

 

 ti = si + τi  (t0 = 0, τ0 = 0). 

 

 Note: Here, we are assuming that our delay in actuation is less 

than our sampling time interval, i.e., τi  < ds. We acknowledge that this 

model is highly simplified, but that its observed patterns are still useful. 

 

 Using these assumptions, we can derive a mapping between 

values of the state and control input for consecutive action times. [4] 

Some manipulation of numbers, as demonstrated by Kalmár Nagy, 

allows us to obtain the following mapping: 

 

 

 

 Thus, we now have a recursive relationship between our state 

and control input at any given time. We can then rewrite this as: 
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 We can see from this that each of our terms is dependent upon 

the previous one in the sequence. To account for this dependency, we can 

describe the distribution of these values over an associated Markov 

chain. 

 

 By definition, this gives us a linear jump system. 

 

 

3 Consequences of linear jump patterns 
 

 The existence of linear jump patterns within linear control 

systems allows us to run Monte Carlo simulations to obtain information 

about the stability of a system. (However, the goal of this paper is instead 

to understand the underlying principles that govern this class of 

problem—so our focus is on drawing parallels to this finding.) 

 

 

4 Fibonacci series and graph 
 

 If we take the well-known Fibonacci recurrence, 

 

xn+1 = xn ± xn-1, 

 

we can rewrite it using a two-dimensional map: 

 

, 

 

where the coefficient matrix Dn is chosen randomly as either A 

or B with probability ½, and 

 

. 

 

Recall that our original goal was to elucidate the symmetry 

between our linear control system equation and this Fibonacci one. In 

order to do this, we must examine the geometry induced by the Fibonacci 

series. 
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Graph of the random Fibonacci maps on the first quadrant. [4] 

 

Let us consider the following mappings of lattice points to lattice 

points (i.e., points with integer coordinates). 

 

A: (i, j)  (j, i + j) 

B: (i, j)  (j, i – j) 

 

We can now modify this recurrence so that it acts only on the 

first quadrant of Z
2
. 

 

Our modified mappings will then be: 

 

A: (i, j)  (j, i + j) 

B: (i, j)  (j, |i – j|) i,j > 0. 

 

If we repeat this mapping starting from (1, 1), we obtain the 

graph above. (A consequence of this graph is that all vertices are 

relatively prime, although I have yet to prove this or find a proof for it.) 

[4] This graph is a directed graph otherwise known as the Fibonacci 

graph. 

 

 

5 Basic topology of the Fibonacci graph 
 

 The graph shown above can be “unfolded” to produce a new 

graph with nodes of the same values. 
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“Tree” version of the Fibonacci graph. [4] 

 

 We will define a point (i, j) as visible if gcd(i, j) = 1. We will 

also say that a point (k, l) is reachable from another point (i, j) if there 

exists a series of transformations (A and B as defined in section 4) that 

takes (i, j) to (k, l). This is equivalent to requiring that all points be 

relatively prime. In section 4, we posited that this was true of every node 

in the Fibonacci graph, so all points on our graph are visible. 

 

From these statements, we can conclude that each point on our 

graph has an “address”—i.e., a series of transformations that take (i, j) to 

(1, 1). 

 

This is equivalent to our earlier statement about linear jump 

systems: 

 

. 

 

 

6 Conclusion 

 

 Now that we have established an equivalence between linear 

control systems and the Fibonacci graph, we can use the graph as a 

model for many other problems in control theory. [4] This strongly 

suggests that graph theory, combinatorics, statistical physics and even 

number theory have applications in control theory. 

 

 The model obtained in section 2 also provides motivation for 

further analysis of the transformation matrix’s eigenvalues. We saw that 

the stability of our system (i.e., rate of convergence/divergence) would 
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be determined by the growth/decay of the associate infinite random 

matrix product.  This suggests that we can use eigenfunctions as our 

basis for diagonalization and separation of variables. It is conceivable 

that we can decouple our problem in a manner similar to Fourier’s 

problem of heat conduction in a solid bar with zero temperature at both 

ends. [2] We can also use our eigenvalues from our model in section 2 to 

glean information about our system’s resonance (i.e., level of response to 

selected inputs). 
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