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Generalized singular value decompasition
Syntax

[U,V,X,C,5] = gsvd(A,B)
sigma = gsvd(A, B)

Description
[U,7,%X,C,S] = gsvd(a,B) returns unitary matrices U and v, a (usually) square matrix X, and nonnegative diagonal matrices C and S so that

A = U*C*X!'
B = V*S*X'
CY*C 4 8'*8 =1

~ and B must have the same number of columns, but may have different numbers of rows. If A is m-by-p and B is n-by-p, then U is m-by-m, *" is n-by-n and
X is p-by-g where g = min(m+n, p).

sigma = gsvd(A,B) returns the vector of generalized singular values, sqrt (diag (C'*C) ./diag (5'*5)).

The nonzerc elements of S are always on its main diagonal. If m = p the nonzero elements of C are also on its main diagonal. But if m < p, the nonzero
diagonal of C is diag (C,p-m). This allows the diagonal elements to be ordered so that the generalized singular values are nondecreasing.

gsvd (4, B, 0), with three input arguments and either mor n = p, produces the "economy-sized"decomposition where the resulting U and v have at most
p columns, and C and s have at most p rows. The generalized singular values are diag(C) ./diag(S).

When B is square and nonsingular, the generalized singular values, gs--d (A, B), are equal to the ordinary singular values, svd (A/B), but they are sorted in
the opposite order. Their reciprocals are gs~d (B, A).

In this formulation of the gsvd, no assumptions are made about the individual ranks of & or B. The matrix X has full rank if and only if the matrix [A;B]
has full rank. In fact, svd (X) and cond (X) are equal to svd([&;B)) and cond([A;B]}. Other formulations, eg. G. Goh_;b and C. Van Loan [1], require that
null (A) and null (B) do notoverlap and replace X by inv(X) or inv (X').

Note, however, that when null (A) and null (B) do overlap, the nonzero elements of C and S are not uniquely determined.
Exampies
Example 1

The matrices have at least as many rows as columns.

A = reshape(1:15,5,3)
B = magic(3)
A=
1 6 11
2 7 12
3 8 13
4 9 14
5 10 15
B =
8 i 6
3 ) 7
4 2 2

The statement
[U,7,%,C, 8] = gsvd(A,B)

produces a 5-by-5 orthogonal U, a 3-by-3 orthogonal 7, a 3-by-3 nonsingular X,

X =
2.8284 -9.3761% ~6.9346
=5.6569 =-8.3071 -18.3301
2.8284 «7:2381 -29.7256
and
c =
0.0000 0 0
0 0::3155 0
0 0 0.9807
(o] 0 0
4] 0 0
S =
1.0000 0 0
0 0.9489 0
0 0 0.1957

Since & is rank deficient, the first diagonal element of C is zeroc.
The economy sized decomposition,

[U,V,X,C,8] = gsvd(A,B,0)
produces a 5-by-3 matrix U and a 3-by-3 matrix C.

ww.mathworks.com/helo/techdoc/ref/asvd.html
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U =
0.5700 -0.6457 -0.4279
=-(.7455 -0.3296 -0.437S8
-0.1702 -0.0135 -0.4470
0.2966 0.302¢ -0.4566
0.0490 0.6187 -0.4661

Cc =
0.0000 0 0
0 0.3155 0
o} 0 0.9807

The other three matrices, =, X, and S are the same as those obtained with the full decomposition.
The generalized singular values are the ratios of the diagonal elements of ¢ and s.

sigma = gsvd(A,B)
sigma

0.0000
0.3325
5.0123

These values are a reordering of the ordinary singular values

svd (A/B)
ans =
5.0123
0.3325
0.0000
Example 2

The matrices have at least as many columns as rows.

A = reshape(1:15,3,5)
B = magic (5)

A =
1 4 7 10 13

2 3 8 11 14

3 6 9 12 15

B =

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 g

The statement
[0,V,%,C,5] = gsvd(A,B)

produces a 3-by-3 orthogonal U, a 5-by-5 orthogonal ", a 5-by-5 nonsingular ¥ and

Cc =
4] 0 0.0000 0 o]
0 4] 0 0.0439 0
0 0 0 0 0.7432
5 =
1.0000 0 0 0 0
0 1.0000 0 0 0
0 0 1.0000 0 0
0 0 0 0.9990 0
0 0 0 0 0.64630

In this situation, the nonzero diagonal of C is diag(C, 2}. The generalized singular values include three zeros,

sigma = gsvd(A,B)
sigma =
G
0
0.0000
0.0439
1.1109

Reversing the roles of A and B reciprocates these values, producing two infinities.

gsvd (B, A}
ans =
1.0e+016 *

0.0000
0.0000

mww.mathworks.com/help/techdoc/ref/asvd.html
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4.4126
Inf
Inf

Algorithms

The generalized singular value decomposition uses the C-S decomposition described in [1], as well as the built-in svd and qr functions. The C-S
decomposition is implemented in a subfunction in the gs~d program file.

Diagnostics
The only warning or error message produced by gsvd itself occurs when the two input arguments do not have the same number of columns.

Refarences
[1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third Edition, Johns Hopkins University Press, Baltimore, 1996
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Abstract

Formulas are derived for the probability density function and the prob-
ahility distribution function of the largest canonical angle hetween two
p-dimensional subspaces of B chosen [rom the uniforma distribution on
the Grassmann manifold (which is the unique distribntion invarisut by
orthozonal transformotions of B*). The formulas invelve tlie gamma
function and the hypergeometric function of a matrix argument.

AMS subject classifications. 15A51 Stochastic matrices: 15A52 Random mntrices: 33C05
Classical Lyperzeometric functions. oFy: 33C 15 Orthogonal pelynomials and fnctions of hvpersc-
ometrie type (Jacobi, Laguerre. Hermite, Askey scheme, ete.): 621110 Distribution of statistios

Key words. Largest principal angle, lareest canonical angle. projection 2-norm, Grassmann
manifold, random matrices. zamma function. hyperzeowetric function of matrix argument.

1 Introduction

Several muncericenl algorithms on Grassuvnn mauifolds (e, sets of fixed-dimensional subspacos of
a Euclidean space) display a convergence property of the lollowing type: if the distance dist(Y, 8)
between the initial peint (l.e.. subspace) Y aud the solution point $ iz smaller thaw some given
number 4, then the sequence of iterates generated by the slgorithm is guarantecd to couverge to
the solution &. An example is Newton’s method on Riemannian manifolds (Grassmann manifolds
are purticular cases of Riemannian manifolds) for whicl v and o theorems [DPMO3] provide values
for 4.

Then the question naturally arises io determine the probability thai » randomly chosen ini-
tial subspace M eatisfies the distance condition dist().S) < 4. There are several definitions for

IDépartement ingéaicrie mathématique, Universite catholigue de Lowvain, 1345 Louysin-la-Neuve, Deleiwm, and
Peterhouse, University of Cambridge, Cambridge CB2 1RD, UK. URL: http://www.inma.uclae.be/~absil/

"Departinent of Mathematics, Massachusetts Iustitule of Technology, Cambric MA 02139, US.AL

The work of this author was done in part while the author was a Postdoctoral Assoeiate with the Schoal of
Clomputational Science of Florida State Universit
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Computing the Complete CS Decomposition

Brian D. Sutton*
May 19, 2008

Abstract

An algorithm is developed to compute the complete CS decomposition (CSD) of a
partitioned unitary matrix. Although the existence of the CSD has been recognized
since 1977, prior algorithms compute only a reduced version (the 2-by-1 CSD) that is
equivalent to two simultaneous singular value decompositions. The algorithm presented
here computes the complete 2-by-2 CSD, which requires the simultaneous diagonaliza-
tion of all four blocks of a unitary matrix partitioned into a 2-by-2 block structure. The
algorithm appears to be the only fully specified algorithm available. The conmputation
occurs in two phases. In the first phase, the unitary matrix is reduced to bidiagonal
block form, as described by Sutton and Edelman. In the second phase, the blocks are si-
multaneously diagonalized using techniques from bidiagonal SVD algorithms of Golub,
Kahan, and Demmel. The algorithm has a number of desirable numerical features.

1 Introduction

The complete CS decomposition (CSD) applies to any m-by-m matrix X from the
unitary group U(m), viewed as a 2-by-2 block matrix,

g m-gq
_ P X1 X1
e m—p [ Xo1 Xas }

For convenience, we assume ¢ < p and p+ ¢ < m. A complete CS decomposition has

the form
C | o) 0 0
ik olo I,, © W :
X‘{ Uz] S|C o 0 W | o
00 0 Imopo

C = diag(cos(f1),...,cos(8,)), S = diag(sin(6h),...,sin(d,)),

in which 61,...,0,€ [0, 3], U1 € U(p), U2 e U(m —p), Vi € U(g), and V3 € U(m — q).
The letters CS in the term CS decomposition come from cosine-sine.

The major contribution of this paper is an algorithm for computing (1.1). We
believe this to be the only fully specified algorithm available for computing the complete
CS decomposition. Earlier algorithms compute only a reduced form, the “2-by-1" CSD,
which is defined in the next section. The algorithm developed in this article is based

*Department of Mathematics, Randolph-Macon College, P.O. Box 5005, Ashland, VA 23005 USA. email:
bsutton@rmec.edu. Supplementary material is available at the author’s home page.
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on the SVD algorithm of Golub and Kahan and has a number of desirable numerical
properties.
The algorithm proceeds in two phases.

1. Phase [: Bidiagonalization. In the special case p = g = 3, the decomposition is
P B® B(UJ [ @ g

X = 1 ’ 1.2

[ P ] { B B Qs (12)

in which Bg) and Bé‘i) are upper bidiagonal, Big) and Bég) are lower bidiagonal,
and P, Py, Q1, and @2 are g-by-¢ unitary. We say that the middle factor is a
real orthogonal matrix in bidiagonal block form. (See Definition 1.1.)

(0} o)
2. Phase 1I: Diagonalization. The CSD of {i}(‘,, EEJJ] is computed,
21 22

B BD | [u e 517 m :
B BY |~ Uz || -8 © V2|
Combining the factorizations gives the CSD of X,

2[5 ][ B AN o]t s

Phase I is a finite-time procedure first deseribed in [18], and Phase II is an iterative
procedure based on ideas from bidiagonal SVD algorithms [6, 8].

Some of the earliest work related to the CSD was completed by Jordan, Davis,
and Kahan [4, 5, 12]. The CSD as we know it today and the term CS decomposition
first appeared in a pair of articles by Stewart [16, 17]. Computational aspects of the
2-by-1 C8D are considered in (3, 13, 14, 17, 19] and later articles. A “sketch” of an
algorithm for the complete CSD can be found in a paper by Hari [11], but few details
are provided. For general information and more references, see [2, 10, 15].

1.1 Complete versus 2-by-1 CS decomposition

Most commonly availableA CSD algorithms compute what we call the 2-by-1 CS de-
composition of a matrix X with orthonormal columns partitioned into a 2-by-1 block
structure. In the special case p = ¢ = %, X has the form

q
5 X1
e ]
e [ Xan
5 [k o
£=[% g ][ 5]

A naive algorithm for computing the 2-by-1 CSD is to compute two SVD's,

{Xu_mm?

and the CSD is

Xg1 = (-U2)5VY,

reordering rows and columns and adjusting signs as necessary to make sure that the
two occurrences of V7" are identical and that C? + 82 = I. This works in theory if no
two singular values of Xy; are repeated, but in practice it works poorly when there are



5 Numerical experiments

Formulas in Theorew 1 require an sleorithm that evaluates the hyperbolic function o Fy with matrix
argument. Recently, new algorithms were proposed that cfficiently approximate the hy pergeomet-
ri¢ function of matrix argument through its expansion as & series of Jack lunctions IKED3], und
MATLAB [M~t92] implementations of these algoritlims were made available. In nmmerieal ¢ “poeri-
ments, we used the MATLAB script mghi-—dedicated (o special case when the matris argument is
a multiple of the identity—'o evaluate formulas (11) and (12).

For the purpose of checking the results given by the formulas evalnated with the MATLAR
script, comparisons were made with the probability functions estimated from sainples of p-dimensiona!
subspaces of K. The subspaces were selecied as span(X), with n » p matrix X chosen from a
Gaussinn distribution. The principal angles hetween span(X) and the fixed subspace span(/, %)
were computed using the MATLAB expression asin(svd(X(p+1:n,:))). As an illustration. the
case it —= 7, p - 3 is shown on Figure 1. An exeellent agreement is obscrved between the compnted
probability functions and the ones cstimated from the sample.

n=7, p=3, nb pls=100000 n=7, p=3, nb pls=100000
1 T T T T T
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Figure 1: The solid curves correspond to the probability density finction (11)left-hand plot—
and the probability distribution funetion (12)-right-hand plot—cvaluated usine mhgi for the ease
n - 7.p 3. The histogram and the stars show approximations evaluated from a sample of 107

-

three-dimensional subspaces in 7 selected from the uniform distribution on the Crassmannian.
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where o; are the singular values of A and the cigenvalues of S.

The proof follows from the fact that, if A = USV’ is the singular value decom- -
position for A, then ) = UV’ and § = VEV’, which also explains why the

Jacobian is written in terms of the singular values o; of A.

CS decomposition (see [35]).

Valid for all three cases (8 =1,2.4). Qisnxn orthogonal /unitary /symplectic.

Then for any k+j =n, p=4k — j > 0, the decomposition is

Uy U 0 L, 0 0 Viz Vi 0
Q=1 U Un 0 0 ¢ S Viy Vo 0
0 0 U g P 0 0 Vv
5 o . . U U
such that Us, V3 are j x j orthogonal /unitary /symplectic, and
U Usy
Vip Vi . , o s -
are k x k orthogonal/unitary/symplectic, with {/;; and 14, being
Vi Vi

s B v o s o -
pxp,and C' and S are j x j real, positive, and diagonal, and C? + §2 = | s

Parameter count:

nn+1)

=

no= (BG+D)-(B-15)+i +

+ (3k(k+1yk—ﬁp—@2i1—)+p)

This count is a little special, and so we will give it in detail. The first part in
the right hand side counts the number of parameters in U, and V2 (which are
independent), and accounts for the choice of phases, since U, C'Vy is the SVD of
the bottom j x j part of @. The second term accounts for the J parameters of

C (which are the same in §).

' Up U
Finally, the last parenthesis counts the number of parameters in e
U Ux
: Va1 U
and B R , and accounts for the fact that . ( Vi, Vi ) is
Vi Vi Uni

41



determined by the other matrices in the decomposition and thus, one has to

subtract the missing number of parameters. Since the number of parameters in

Uy : .
either ' or ( Vi ¥ ), given the rest of the orthogonal matrices, is

Un
Bp(p +1)/2 — p, the count follows.

Note that the choice of phases in U,. V5 determines all phases in the decompo-
sition.
Now let 6; € (0,%). ¢ <i<j be the angles such that C' =diag(cos(61), .. .,cos(8;)),
and S =diag(sin(6:),...,sin(¢;)). To ensure uniqueness of the decomposition
we order the angles, 6; > 0;, for all 1 <j.

. . Un Uy .
For notational purposes, let U7 = ,and V] = ( Vi Ve )

U21 (]22

Jacobian:
(Q'dQ) Hbm (0; — 6;)° sin(6; + 6;) Hco&; B=1 gin(6;) df

x (U1dUy) (UsdUs) (Vfd%) (VadVs) .

The proof follows from the decomposition itself. Note that V) € %ﬁk

Tridiagonal QAQ’ (eigenvalue) decomposition (T = QAQ').
Valid for real matrices. T is an n X n tridiagonal symmetric matrix as in (3.3),
() is an orthogonal n X n matrix, and A is diagonal. To make the factorization
unique, we impose the condition that the first row of @ is all positive. The
number of independent parameters in @ is n—1 and the can be seen as being all
in the first row ¢ of (). The rest of Q can be determined from the orthogonality
constraints, the tridiagonal symmetric constraints on A, and from A. Parameter
count:

2n—1=n—14+n.
Jacobian:

H'n ]b
Hz_l qi

42

dT = (dg) dA



