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Abstract 

This paper presents an equilibrium model of the term structure of interest rates when 
investors have heterogeneous preferences. The basic model considers a pure exchange 
economy of two classes of investors with different (but constant) relative risk aversion 
and gives closed-form solutions to bond prices. I use the model to examine the effect of 
preference heterogeneity on the behavior of bond yields. The model is also extended to 
cases of more than two classes of investors. 
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1. Introduction 

Existing models of the equilibrium term structure of interest rates are often 
based on the representative agent framework with specific parametric assump- 
tions about the preferences of the representative agent. For example, the 
well-known model of Cox, Ingersoll, and Ross (1985a) assumes that the repre- 
sentative agent has logarithmic preferences and faces a production opportunity 
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with an expected return that follows a ‘square-root’ process (see also Longstaff 
and Schwartz, 1992; Sun, 1992). When the financial market is complete (in the 
sense of Harrison and Kreps, 1979), a representative agent can be constructed 
whose marginal utility under the given process of aggregate consumption 
determines the equilibrium security prices (see, e.g., Constantinides, 1982). How- 
ever, the preferences of the representative agent are in general quite complicated 
even when the preferences of individual investors are simple (see, e.g., Dumas, 
1989; Rubinstein, 1974, considers special cases of investor preferences when the 
representative agent’s preference exhibits simple forms). Instead of being as- 
sumed, they should be derived from the primitives of the economy, such as the 
individual preferences, as part of the equilibrium analysis. Thus, even though 
strong assumptions about the representative agent’s preferences can lead to 
simple bond pricing formulas, they are often too restrictive to reflect the effect of 
any investor heterogeneity on the behavior of bond prices. Furthermore, start- 
ing from the representative agent without explicitly modeling the interaction 
among individual investors leaves out any implications for quantities (such as 
the amount investors borrow and lend) and how they are related to bond prices 
and interest rates. In addition, linking bond prices and disaggregated variables 
such as the amount of borrowing and the distribution of consumption and 
wealth among investors makes the model more appealing empirically. Note that 
representative agent models only relate bond prices to underlying state variables 
that may not be directly observable. By explicitly modeling individual investors, 
bond prices can be related to disaggregated variables that are directly observ- 
able. These variables can then be used as instruments for the underlying state 
variables in any empirical implementation of the model. 

This paper considers a simple pure exchange economy with two classes of 
investors who have time-additive, state-independent, constant relative risk- 
aversion preferences with risk-aversion coefficients al and u2, respectively, 
where a, > u2. Equilibrium bond prices and yields are solved in closed form. 
The main goal of the paper is to examine how the heterogeneity in preferences 
can affect the behavior of the term structure of interest rates. In particular, the 
equilibrium term structure of interest rates with both classes of investors present 
is compared with the term structure with only one class of investors. 

In general, the yield curve with both classes of investors behaves differently 
from the two yield curves each with only one of the two classes of the investors 
present in the economy. In the simple case in which aggregate consumption 
follows a geometric Brownian motion, its growth will be independently and 
identically distributed over time. In worlds populated by only one class of 
investors, aggregate consumption is simply their aggregate consumption. Since 
their utility function is isoelastic, the growth of their marginal utility will then be 
i.i.d. over time also. Thus interest rates will be constant over time and the term 
structure will be flat, independent of the level of aggregate consumption (see, e.g., 
Stapleton and Subrahmanyam, 1990; McCulloch, 1993). When both classes of 
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investors are present, however, the growth of investors’ marginal utility will be 
endogenous and non-i.i.d. over time. The a, investors (with low elasticity of 
intertemporal substitution) prefer lower consumption growth than the a2 inves- 
tors. In equilibrium, the consumption of the a, investors will be less sensitive to 
changes in aggregate consumption than the consumption of the a2 investors. 
Furthermore, the nr investors’ share of aggregate consumption is higher (lower) 
than that of the n2 investors when the level of aggregate consumption is high 
(low). The consumption growth of individual investors thus depends on the level 
of aggregate consumption. Consequently, the instantaneous interest rate and the 
shape of the yield curve change over time as aggregate consumption changes. 

Borrowing and lending between the two classes of investors in financing their 
optimal consumption plans tend to increase the volatility of short-term yields. 
In particular, short-term yields can move outside the range bounded by the 
values they would take in worlds populated by only one class of investors. On 
the other hand, the long-term yields with both classes of investors present are 
closely related to the bounds given by the two yield curves with only one of the 
two classes of investors. The long-term yield always approaches the lower bound 
as the maturity increases. With mild growth in the economy, the preferences of 
the a1 investors dominate the long-term yields even though the a, investors may 
eventually own the whole economy (independent of the current wealth distribu- 
tion between the two classes of investors). This result implies that investors with 
small relative wealth can have large effects on bond yields. Note that the more 
risk-averse investors are more averse to low levels of future consumption. 
Long-term bonds are more attractive to them as hedging instruments against 
future downturns of the economy. Consequently, the al investors can exert 
stronger influence on the equilibrium prices of long-term bonds when the 
probability of future downturns is not too small, i.e., the growth of the economy 
is not too high. 

A close cousin of the current model is Dumas (1989). He considers the 
equilibrium of a production economy with two investors, one of whom has 
logarithmic preferences and the other power preferences. Since the growth of the 
economy is endogenously determined in a production economy, Dumas has to 
conjecture the existence of equilibrium and resorts to numerical solutions in his 
analysis. The pure exchange economy considered here allows closed form 
solutions to the equilibrium so that the behavior of bond yields can be analyzed. 
The current model is also related to international growth models with hetero- 
geneous agents (see, e.g., Solow, 1956; Cass, 1965; Koopmans, 1965; Becker, 
1978; Lucas and Stokey, 1984). These models often assume certainty and are less 
interesting for studying the term structure of interest rates. 

The paper is organized as follows. Section 2 defines the basic model in which 
there are two classes of investors and the aggregate endowment follows a simple 
geometric Brownian motion. The equilibrium of the economy is derived in 
Section 3. Section 4 calculates equilibrium bond prices and analyzes the effect of 
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preference heterogeneity on the behavior of bond yields. Extensions of the basic 
model to allow more than two classes of investors and more general processes of 
the aggregate endowment are discussed in Section 5. Some further comments are 
given in Section 6. All proofs are in the Appendix. 

2. The basic model 

Consider a pure exchange economy of a single perishable consumption good 
(the numeraire). The economy is endowed with a flow of the consumption good. 
The rate of endowment flow is Y, at t for t E [0, T ] and follows a geometric 
Brownian motion: 

dY, = ,uY,dt + oY,dw,, tECO> Tl, (1) 

where Ye > 0, p 3 0, and g > 0 are constants, and w, is a standard Wiener 
process. (Throughout the paper, equalities or inequalities involving random 
variables are in the sense of almost surely with respect to the underlying 
probability measure.) The process Y, has a natural boundary at zero which is 
attractive when p < $a2 but always unattainable (see Karlin and Taylor, 1981). 
This implies that Yt is strictly positive with probability one. Y, as defined by (1) 
has the following solution: 

(2) 

Conditional on Y,, Yt +< is log-normally distributed. Define g,(z) = Y, +J Yt as the 
(gross) growth rate of aggregate consumption; E[logg,(z)] = (p - $?)r and 
var[logg,(z)] = 0~2. 

There exists a market where shares of the aggregate endowment (the ‘stock’) 
are traded. Holding one share of the stock from t = 0 to t = T yields the payoff 
(i.e., the dividend) at rate {Y,, t E [0, T]}. In addition, there exists a ‘money 
market’ in which a locally risk-free security can be traded (i.e., investors can 
borrow from or lend to each other without default). For t E [0, T], let S, be the 
price of the stock (ex-dividend) and rt the instantaneous interest rate. 

Investors in the economy can trade competitively in the securities market and 
consume the proceeds. Let c, be an investor’s consumption rate at t, a, his 
holdings of the risk-free asset, and Br his holdings of the stock. The consumption 
and trading strategies {ct, (a,, %,)} are adopted processes satisfying the standard 
integrability conditions: 

c 

T 

s 

T 

s 

T 

c,2dt < co , 1 a,r,dt + %,(Y,dt + dS,)I < co , QfWtl < 00 > (3) 
0 0 0 
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where [S,] denotes the quadratic variation process of S,. [See, e.g., Karatzas and 
Shreve (1988) for a discussion on the quadratic variation process of a given 
process.] The investor’s wealth process defined by W, E 01, + Q,S, must be 
positive with probability one and must conform to the stochastic differential 
equation 

dW, = a,r,dt + B,(Y,dt + dS,) - c,dt . 

The restriction of positive wealth is to rule out arbitrage opportunities (follow- 
ing Dybvig and Huang, 1988). Let 0 denote the set of trading strategies that 
satisfy the above conditions. 

There are two classes of identical investors in the economy, denoted 1 and 2. 
Both classes of investors are initially endowed with only shares of the stock. Let 
CG.~- and Qo- be the initial shares of the risk-free security and stock of class i 
investors. Then cli.om = 0, Bi,om > 0, i = 1,2, and ~~llOi,o~ = 1. Note that 
(Q~, Bi,o), which denotes the optimal holdings of class i investors, is in general 
different from their endowment (0, Bi, om). A class i investor, i = 1,2, chooses his 
consumption/trading strategy (Ci, (Q, ei)} to maximize his lifetime expected 
utility 

Ll T 

E* 

,t-ai _ 
e-p(s-I) 1.s 

1 - @Ids 1 , Ui>O, t (4) 

where p > 0 is the time discount parameter and is the same across investors. 
Since investors within each class are identical, we do not distinguish them and 
simply denote them respectively as investor i, i = 1,2. Both classes of investors 
have constant relative risk aversion. Sections 3 and 4 further assume that a, = 1 
and a, = 4 to obtain simple solutions (the utility function with a = 1 is obtained 
by taking the limit lim,, i(cl -’ - l)/(l - a) = loge). Thus, class 1 investors 
have a logarithmic utility function and class 2 investors have a square-root 
utility function, and class 1 investors are more risk-averse than class 2 investors 
(in terms of relative risk aversion). Section 5 relaxes these restrictive assump- 
tions. 

In addition, the parameter values are subject to the following growth condi- 
tion: 

p >+max[0,~-$d2]. (5) 

This growth condition guarantees that investors’ expected utilities are uniformly 
bounded for all T E [0, co) given the aggregate consumption process in (l), 
allowing taking the limit T -+ cc in future discussions. 

Before considering the equilibrium of the economy as defined above, a few 
comments on the economy are in order. For simplicity in exposition, Y, is 
restricted to be a univariate diffusion process with linear drift and diffusion 
coefficient. Section 5 considers extensions to the multivariate case. Extensions to 
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more general forms for the drift and the diffusion coefficient, including path 
dependence, are also possible. 

In specifying the securities market, the only traded securities are the stock and 
the locally risk-free security. As will be shown later, given the current process of 
Y,, the stock and the risk-free security are sufficient to dynamically complete the 
securities market in the sense of Harrison and Kreps (1979). Arbitrary consump- 
tion plans (satisfying certain integrability conditions as specified later) can be 
financed by continuously trading in the stock and the risk-free security. Allow- 
ing additional securities will not affect the nature of the equilibrium. Thus, the 
market equilibrium is derived with the securities market consisting of only the 
stock and the risk-free security. Simple arbitrage arguments can then be used to 
price other securities if they exist. 

A principal assumption is that there are only two classes of investors in the 
economy and that they behave competitively in the market. Since investors 
within each class have the same isoelastic preferences, each class can be repre- 
sented by a single representative investor who has the same preferences as the 
individual investors and the total endowment of the class (see, e.g., Rubinstein, 
1974). In effect, the economy is populated with only the two representative 
investors, who behave competitively. In the remainder of the paper, the 
two representative investors are treated as two individual investors without 
referring to the class of investors they represent and denoted investor 1 and 2, 
respectively. 

3. Market equilibrium 

This section considers the market equilibrium of the economy defined above. 
I first derive a solution to the market equilibrium and then discuss the general 
nature of the equilibrium and the pricing implications. 

3.1. Deriving the equilibrium 

The definition of a market equilibrium follows Radner (1972): 

Dejinition 1. A market equilibrium of the economy is the pair of price process 
{S, r> and consumption-trading strategies {Ci, (Mi, 0,); i = 1,2) such that 
{ci, (4, oil>, i = 1,2, maximizes investor i’s expected utility: 

cs T 
e -a - t) ci, s 1-ai _ 1 

sup E, 
iC&Ji)} t l-ai ds > tECO,Tl, 1 

subject to 

(6) 

dWi,t = t+r,dt + Oi,,(Ytdt + dS,) - ci,& 3 
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and markets clear: 

iHi,,= 1; ?ai,,=O. (7) 
i=l i=l 

Eq. (7) gives the market clearing of the securities market. The market clearing of 
the goods market is guaranteed by Walras’ law. Combining the two market 
clearing conditions in (7) we have WI,, + W,,, = S,. 

The equilibrium is derived in three steps. The first step is to solve the 
Pareto-optimal allocations of the economy. The next step is to show that each 
Pareto-optimal allocation can be supported by an Arrow-Debreu equilibrium 
where investors can trade arbitrary future payoff streams at the initial date and 
achieve the given allocation. The final step is to construct the dynamic imple- 
mentation of the Arrow-Debreu equilibrium (see Duffie and Huang, 1985) 
where investors continuously trade the stock and the risk-free security at prices 
given by the pricing functional in the Arrow-Debreu equilibrium and achieve 
the same allocation in equilibrium. This then gives the market equilibrium of the 
economy.’ 

When both investors have positive initial wealth, an allocation {cl, cZ} is 
Pareto-optimal if and only if there is a constant I. E (0, 1) such that {cr, cZ> solves 
the problem 

sup Eo T e-“‘[/Zlogcr,, + 2(1 -L) &] dt , (8) 
iW2) is 0 I 

subject to 

C1,t + Cz,t d y,, tECo> Tl 

Here, i, is the weight of the investor with logarithm utility in the welfare function 
to be maximized. Note that in an exchange economy, there is no intertemporal 
transformation of resources. The intertemporal resource constraint in (8) is 
simply the collection of resource constraints for each date and each state. 
Furthermore, the investors’ preferences are time-additive and state-separable, 
and so is the welfare function. Thus maximizing the expected intertemporal 
welfare function in (8) is equivalent to maximizing the welfare function period by 

iMany authors have studied the existence of market equilibrium in quite general settings in 
continuous time (see, e.g., Duffie and Zame, 1989; Mas-Cole11 and Zame, 1991; Karatzas, Lehoczky, 
and Shreve, 1990). However, the model defined above does not directly fit into their framework. In 
particular, the aggregate endowment process as specified by (1) is not bounded away from zero 
which is often assumed in the literature. 
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period and state by state subject to the corresponding resource constraint. For 
each period and each state, the maximization problem takes the following 
form: 

sup d eWPt[/?logcl + 2(1 -A)&] . (9) 
Cl + cz <Y 

Its solution gives the optimal sharing rule between the two investors. 

Lemma 1. Given 1, E (0, l), the optimal sharing rule between the two investors is 

Also, &(Y, 2)-l = (1 -+QY, /?-l’2. 

The optimal sharing rule as a function of Y is nonlinear and depends only on /2. 
Furthermore, in a Pareto optimum the marginal utilities of the two investors are 
linearly related. Given 1,, the Pareto-optimal allocation is simply &, = &( Y,, n), 
i = 1, 2, V Y,, and t E [IO, T 1. For future convenience, define a representative 
agent by his utility function at t over aggregate consumption Y, as follows: 
un(Y,, t) = e-%,(Yt) and 

IAn = [/zlo&(Y,, i) + 2(1 - 3,) &(Y,, I,)] . 

For simplicity in notation, Us represents both the time discounted and the 
undiscounted utility function of the representative agent. Let b = 4(1- A)“/,?“. 
The marginal utility of the representative agent over aggregate consumption is 

m, z aUi.(yt, t) 
ayt 

tc[O, T]. (11) 

It is easy to see that the relative marginal utility of the representative agent 
(between any two states) is the same as the relative marginal utilities of the two 
individual investors. 

For any Pareto-optimal allocation, an Arrow-Debreu equilibrium can be 
derived that supports the allocation. In an Arrow-Debreu equilibrium, inves- 
tors can trade arbitrary payoff streams at the initial date. The equilibrium is 
defined as the pricing function {c$~,+ s E [0, T]}, such that the price of an 
arbitrary payoff stream {X,, s E [0, T]} at t = 0 is given by the linear functional 
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@o(X) = M@$o,sXd~l> and the market clears. The specific form of investor 

preferences assumed here leads to the following lemma: 

Lemma 2. Given /z E (0, 1) and the corresponding optimal allocation (chI, chz), there 
exists an Arrow-Debreu equilibrium that leads to the same allocation, with the 
pricing function given by q50,s = m,/mo, s E [0, T]? 

Clearly, the pricing function dO,s is positive. The value of the pricing function for 
any state at s is simply the ratio between the marginal utility of the representa- 
tive agent in that state and his marginal utility at time zero. In general, 40,s can 
depend on s and the whole time path of Y, up to s, which gives the complete 
description of the underlying state of the economy at s. In the current setting, 
however, due to the time-additive and state-separable preferences of the inves- 
tors, &,s only depends on s, Y,, Y,, and 1. Thus 40.s = $(Y,, s;YO; 1,). Although 
+O,s gives the pricing function at the initial date, the pricing function at any 
future time t is simply I$*,, = m,/m,, where t, s E [0, T ] and s 3 t. Clearly, 
&, = 4( Y,, s; Y,, t; 2). The Arrow-Debreu price of payoff (X,, s E [0, r]} at t is 
then @&V = Wjf’4t,,X,dsl. 

The literature often assumes that the pricing function 4I is bounded above 
and away from zero (see, e.g., Duffie and Huang, 1985; Duffie, 1986; Huang, 
1987; Duffie and Zame, 1989). These conditions are not satisfied here, implying 
that securities with payoffs satisfying simple integrability conditions such as 
E, [ izX$‘ds] < oc do not always have finite prices. This is not surprising when 
the state prices are unbounded. Securities that have nontrivial payoffs in states 
with high state prices will certainly have high prices at time zero. The remainder 
of the paper will be restricted to securities that have finite Arrow-Debreu 
prices. 

Turning to the market equilibrium as defined at the beginning of this section, 
DutIie and Huang (1985) have shown, in a quite general setting, that for any 
Arrow-Debreu equilibrium a corresponding market equilibrium can be con- 
structed as its dynamic implementation to achieve the same allocation. Unfortu- 
nately, the current model does not meet some of the regularity conditions 
required by their results. However, by slightly modifying their approach the 
dynamic equilibrium can be derived as follows. Given an Arrow-Debreu 
equilibrium as specified in Lemma 2, the stock prices and interest rates are 
first calculated using the Arrow-Debreu pricing function. Budget-feasible 
trading strategies can then be found for each individual investor to finance his 
consumption plan given in the Arrow-Debreu equilibrium. Finally, the above 

‘In a setting more general than the current one, Araujo and Monteiro (1989) have shown that the 
Second Welfare Theorem holds (see also Duffie and Zame, 1989; Mas-Cole11 and Zame, 1991). 
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consumption/trading strategy for each investor is shown to be optimal since any 
trading strategy that gives higher expected utility is not budget-feasible (see the 
Appendix for a formal proof). 

Lemma 3. Given an Arrow-Debreu equilibrium as dejned in Lemma 2, there exists 
a dynamic implementation in which prices of traded securities are given by 

Investors optimally choose the consumption plan (cE?~, &) jinanced respectively by 
budget-feasible trading strategies, and the securities market clears. 

Given the definition of m, and the process for Y,, S, and rt can be expressed as 
functions of Y,, t, and 1. Thus, we can write S, = S(Y,, t; 2) and rt = r(Y,, t; 1). 

Combining Lemmas 1-3 gives the solution to the market equilibrium as 
summarized in the following theorem: 

Theorem 1. For the economy dejned in Section 1, there exists a market equilib- 
rium in which (i) the equilibrium prices of traded securities are given by (12); 
(ii) investors’ optimal consumption strategies are 

t,,,=;&G- 11, &= Y,-&,,, (13) 

which are$nanced, respectively, by the following trading strategies: 

h h 
u2,t = - a,,,, e^,t = 1 - Ql,, > 

where Sy = aS/aY; and (iii) b is determined by 

+ 1)dr 
1 

= :(I -em”‘). 

Furthermore, Sy > 0. 

Note that multiplying both sides of (14) by l/(bma) gives WI,O = BI,OmSO for 
the left-hand side, which is investor l’s initial wealth, and E,[~~$,,tc^I,,dt] for 
the right-hand side, which is the cost of his optimal consumption plan. Thus 
(14) is simply investor l’s budget constraint, which uniquely determines b 
(or 3,) in terms of the initial condition of the economy, 19~,~- and Y,. Since 
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Wl,O + wz.0 = so = wo, 0; 4, 1. can also be expressed in terms of the two 
investors’ initial wealth. 

3.2. Properties of the equilibrium 

Given that the uncertainty of the economy is completely characterized by the 
process of aggregate consumption Y, which is a univariate diffusion, the stock 
and the (locally) risk-free security allow the market to be dynamically complete. 
Any consumption patterns (that have finite Arrow-Debreu prices) can be 
financed by continuous trading in these two securities. Thus investors are able to 
achieve Pareto-optimal allocations in the market equilibrium. Introducing 
other securities will not change the equilibrium allocations. Furthermore, any 
other securities can be synthesized by trading only in the stock and the risk-free 
security. Their prices should equal the cost of the synthesizing strategy. As seen 
in Section 5, when Y, follows more general processes more securities will be 
needed to complete the market. 

In deriving the equilibrium, jL, the relative weight of the two investors in the 
welfare function, fully characterizes the Pareto-optimal allocations and the 
supporting equilibria. Eq. (14) uniquely determines 1, (or b) in terms of 8i 0m and 
YO. It is easy to show that /z is an increasing function of 01,0- (holding 
Y0 constant) and an increasing function of Y0 (holding 81,0- constant). When 
8 l,O- + 1, 3” + 1, c^r(Y, i) + Y, and c!~(Y, /2) + 0. This is the limiting case when 
the economy is populated only by investor 1. When a,,,- -+ 0, 1, --f 0, c*l(Y, i-) 
-+ 0, and t2( Y, 2) -+ Y. This is the limiting case when the economy is populated 
only by investor 2. It is also interesting to consider the allocation of consump- 
tion when the initial aggregate endowment is very low or very high, i.e., when 
Y, -+ 0 or Y -+ 00 (holding 19~,~- constant). It is easy to show that when Y. + co, 
%+l,c^,(Y,%) -tY,andL?,(Y,/2) -0. When Yo+O,l.+O,c^l(Y,/l) -+O,and 
tZ(Y, 1) + Y. This suggests that 1, does not simply represent the relative wealth 
of the two investors, even though it can be expressed as a function of the wealth 
of the two investors. For example, even when 81,0m 9 1!9~,~- > 0 (thus 
W,,o/W,,o $ l), /1 can be very small if Y, is very large. In other words, 1, not 
only depends on the initial relative wealth of the two investors but also on the 
level of total initial wealth. 

It is important to note that ;1 depends only on the initial conditions of the 
economy, and remains constant afterwards. Given the initial condition of the 
economy (i.e., Y. and dl, ,--), Y, completely determines the state of the economy 
at t. As the economy evolves, the state of the economy, security prices, investors’ 
wealth, and their security holdings do change. But the sharing rule does not. The 
intuition behind this result is simple. In the current setting, the securities market 
is dynamically complete. In equilibrium, investors follow optimal trading strat- 
egies to achieve consumption distributions such that the relative marginal 
utilities (for any two states) are equal for all investors. (Otherwise, gains could be 
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made for the investors by deviating from their optimal trading strategies.) For 
example, if investor l’s marginal utility is more sensitive to changes in the level 
of consumption than that of investor 2 at the current level of consumption, 
investor 1 will then optimally hold a portfolio that yields lower (higher) returns 
than the portfolio of investor 2 when aggregate consumption increases (de- 
creases). Consequently, their marginal utility remains proportional independent 
of future changes in aggregate consumption. This implies that in all states, the 
two investors’ marginal utilities are linearly related with a constant propor- 
tionality. This condition then gives the sharing rule between the two investors, 
which does not change over time. If one recalculates the equilibrium at a later 
date, the same /1 will be obtained. As the aggregate endowment changes, 
investors’ wealth also changes. But 1, as a function of both investors’ wealth 
remains constant. 

Even though the sharing rule between the two investors does not change over 
time, the actual consumption of the two investors does change as the aggregate 
consumption Y, changes. For example, as Y, increases, investor l’s percentage 
share in aggregate consumption decreases and investor 2’s share increases. 
When Y, drifts to zero, investor l’s percentage share in aggregate consumption 
drifts to one. On the other hand, when Y, drifts to infinity, investor l’s 
percentage share in aggregate consumption drifts to zero. This result is quite 
intuitive given the investors’ preferences. At low (high) levels of consumption, 
investor l’s marginal utility is higher (lower) than investor 2’s marginal utility. In 
equilibrium, investor 1 maintains higher (lower) level of consumption than 
investor 2 when the aggregate consumption is low (high). As investors’ con- 
sumption changes, security prices also change. 

Investors’ optimal consumption policies are financed by their corresponding 
trading strategies. [For more general discussions on optimal trading policies, 
see, e.g., Merton (1969, 1990) and Cox and Huang (1989).] Theorem 1 has the 
following corollary: 

Corollary 1. For A E (0, l), a,,, > 0 and CI~.~ -c 0. When Y, + 0, 8,,,S,/W,,, + 1, 
Wl,,/S, -, 1, and WZ,& + 0. When Y, + 00, 8,,,S,/W,,, --+$, Wl.,/S, + 0, and 
W,,,I& + 1. 

Thus, investor 1 is the lender and investor 2 is the borrower. This is not 
surprising given that investor 1 is more risk-averse than investor 2. Further- 
more, investor 1 shifts his portfolio toward the stock (the risk-free security) when 
the stock price drops (arises) while investor 2 does the opposite. Also, investor 
l’s relative wealth approaches one and zero as the level of aggregate consump- 
tion shifts to zero and infinity, respectively. This implies that investor 1 follows 
a strategy that pays off in bad states of the economy since his marginal utility is 
higher than that of investor 2 at low levels of consumption. 
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3.3. Security prices in equilibrium 

In the market equilibrium, it is also possible to price securities that can be 
replicated by dynamic trading strategies at finite costs. If a security has payoff 
{X,, s E [t, T]) [t 3 01, its price is 

If X, only depends on Y, and t, its price P, as a function of Y and t satisfies the 
stochastic equation: 

dP = pu,Pdt + apPdw , 

where pp = [@P/at) + pY(aP/aY) + ~o~Y~(~~P/~Y~)]/P and cp = oYP,/P. 
Here, it is assumed that X =f(Y, t) is twice differentiable with respect to Y. 
From (15), we obtain the following partial differential equation for P: 

aP aP 1 2 2a2p -++Yay+s Y gy”P+X=noYg, 
at 

(16) 

where r is given by (12) and 

Y am n- -g--= boY 
(17) 

Given X, and proper boundary conditions, the solution to (16) gives the 
equilibrium price of the security. [For a general framework of intertemporal 
asset pricing based on investor optimality conditions, see Merton (1973, 1990) 
and Cox, Ingersoll, and Ross (1985b).] 

The variable 7i: can be interpreted as the market price of risk. Rewrite (16) as 

,LLp + X/P - I’ 
7-l 

VP 

The left-hand side is simply the Sharpe measure of the security, which is the 
expected excess return on the security normalized by its standard deviation. 
Given that there is only one source of risk in the current situation, the Sharpe 
measure is the same for all risky securities and we can call it the market price of 
risk. Since m, is simply the marginal utility of the representative agent at time t, 
(17) can be rewritten as 

where al(Y) is the relative risk aversion of the representative agent at consump- 
tion level Y. Thus, the market price of risk is proportional to the uncertainty in 
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consumption growth CJ and the proportionality constant is just the relative risk 
aversion of the representative agent. As Y, changes over time, the risk aversion 
of the representative agent also changes and so does the market price of risk. It 
can be shown that a>..( Y,) monotonically decreases with Y, and lies in the interval 
(az, al) = ($, 1) It approaches a, and a2 as Y, approaches zero and infinity, 
respectively. Note that the market price of risk when only investor i, i = 1,2, is 
present is simply rcti) = aio which is constant. Thus, the market price of risk when 
both investors are present lies between rcfz) and n(r) and varies over time. 

Given the growth condition (5), the stock price and bond prices are well 
defined at the limit T + a3. As a matter of fact, the limiting economy and its 
equilibrium are well-defined. Certain technical modifications are needed in 
analyzing the infinite-horizon counterpart of a finite-horizon economy (see 
Huang and Pages 1990, for more detailed discussions). However, these modifica- 
tions are quite straightforward in the current setting. For simplicity in exposi- 
tion, in the remainder of this paper, we will consider the limiting economy and 
its equilibrium when T + co. In this case, the economy has an infinite horizon, 
hence the state of the economy at time t only depends on the level of aggregate 
consumption given the initial condition of the economy, not on t itself. 

4. Bond prices and yields 

Turning to the equilibrium term structure of interest rates, let B,(z) be the 
price of a pure discount bond at t that matures at t + r where t, z > 0. Its payoff 
process is Xl = 6(s - t-z) where 6(.) is the Dirac b-function. Substituting 
X,” into the pricing equation (15) gives the following expression for the price at t: 

B,(T) = e -pr E, 
Jlfby,-1 1 J--l. 

(19) 

The yield to maturity y,(z) is defined by ut(r) = - (l/r) log&(z). How the bond 
yield changes with maturity gives the term structure of interest rates. Since the 
state of the economy at t depends on Y,, the bond prices and the term structure 
will also depend on Y,. As Y, changes over time, the term structure also 
changes. 

4.1. Limiting cases 

Before considering the bond prices and the term structure of interest rates 
when both investors are present, it is useful to first examine the limiting cases 
when only one of the two investors is present in the economy (i.e., when 
8 l,O- + 1 or 0). The model in the two limiting cases is similar to Cox, Ross, and 
Ingersoll (1985a), except that the specific process of aggregate consumption is 
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different.3 The resulting interest rate process is identical to the one analyzed 
by Vasicek (1977) in a partial equilibrium context and Stapleton and 
Subrahmanyam (1990) and McCulloch (1993) in a general equilibrium context. 

Let @j(z) be the price of a pure discount bond at t with maturity r when only 
investor i is present in the economy. @‘j(z) can be calculated from (19) by 
properly taking the limits: b -+ 0 for i = 1 and b -+ co for i = 2, respectively.4 
Then 

@‘(z) = e-Or E, [gt(x)-“‘] , i = 1,2. 

In both of these two limiting cases, the bond prices do not depend on the current 
level of aggregate endowment. They depend only on the expectations of future 
growth rates. This result is well-known (see, for example, Cox, Ingersoll, and 
Ross, 1985a; Dumas, 1989; Stapleton and Subrahmanyam, 1990). From the 
distributional assumptions about the growth rates, the following expressions are 
obtained for bond prices in the two limiting cases: 

Lemma 4. Given the process of Y,, 

Bji+) = e-+lr, 

where 

r”‘=P+ui(,,-I:“I~2) 
and i = 1,2. 

It is clear that in the two limiting cases the interest rate is constant over time and 
the term structure is flat, i.e., J@(Z) = I” (i), Vt. Even though the aggregate con- 
sumption Y, varies over time, the yield curve stays constant. 

4.2. Bond prices with two intiestors 

Now consider the bond prices and yields when both investors are present in 
the economy. For simplicity in exposition, let b = 1 in the pricing equation (15) 
from now on. This implies that the following weights are assigned to the 
two investors in the welfare function: 1” = 3 and 1 - 1, = 4. As discussed in 

%0x, Ingersoll, and Ross (1985a) consider a production economy in which the aggregate consump- 
tion is endogenously determined by the representative investor’s optimal consumptiontrading 
strategies. Sun (1992) shows that an exchange economy can be constructed which is analogous to the 
production economy. The endowment process in the exchange economy is taken to be the same as 
the optimal consumption process in the Cox, Ingersoll, and Ross model. The pricing implications are 
the same for the two economies. 

41n obtaining the bond prices in the two limiting cases, the limit b --t 0 or b --f co is taken under the 
integration. The order of taking the limit and integration is irrelevant here. This can be easily shown 
by applying standard convergence results. 
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Section 3.1, this choice of/z involves certain choices of the initial condition of the 
economy. The qualitative behavior of bond prices and yields does not depend on 
this particular choice of the initial condition. Extending the analysis to the 
general case of/z E (0, 1) is trivial. As a matter of fact, there is no loss of generality 
by setting b = 1 here when both investors are present. Note that there is 
a one-to-one correspondence between the economy with b E (0, 1) and initial 
aggregate endowment Y,, and the economy with b’ = 1 and Yb = bYo. Given 
the initial conditions of the economy, the bond prices are completely determined 
by the current level of aggregate consumption. 

The equilibrium bond prices can be calculated by computing the conditional 
expectation in (19). The results are summarized in the following theorem: 

Theorem 2. When both investors are present in the economy, the equilibrium prices 
are given by 

B&) = e-YJ1 + Y, - 1) [IZl,,(4 + ~2,t(41 , (20) 

where 

Furthermore, let 6,(z) = [I - $& + logYJ/(a2z) and E&z) = [n - 1 + &(r)]~& 
Then 

ll,,(z) = e ~ tli2,f(Z)o\/; , 

z2, t(z) = ,~~,wJ2~ .zocxn {etc,~(‘)’ @ [ - l&7)] + e+sl/2-=~~(z)z@ [51,2-,,,(z)]} , 

where cq, = 1, r, = ( - l)“-l(2n - 3)!!/(2n)!! for n > 1, and Q(x) = 

(l/J%) 1” o. e-X’2i2 dx’ is the cumulative normal distribution function. Here, 

n!! = 1 for n < 0 and n!! = n(n - 2)!!for n > 0. 

Although the bond prices are expressed in the form of infinite summation, their 
numerical values are easy to calculate. 

It can be shown that for a given maturity, when Y, + 0, IX,,(z) + Z2Jr) - 
Zi,*(r) . Then Z1,t(z) + Z&z) --t 21,,,(x) and B,(z) + B”‘(z) . On the other hand, 
when Y,+ co,Z,,,(z) 4 Z,,,(z). ThenZi,,(z) + Z2,4z) +Z2,t(r) + [Y,g,(r)lP”“and 
B,(e) -+ P(2). 

The equilibrium bond prices can be used to derive the equilibrium yield curve. 
Two yields are of particular interest. One is the instantaneous interest rate rt, 
which is the limiting yield as maturity goes to zero: Y, = lim,,,,yt(z) . The other is 
the long yield which is defined as the limiting yield as maturity goes to infinity: 
y,(m) = lim,,, y,(z). They give, respectively, the two ends of the yield curve. 
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4.3. Instantaneous interest rate 

We first consider the instantaneous interest rate rt. Theorem 1 and applying 
Ito’s lemma to in, = m(t, Y,) as given in (11) [with b = 11, give the following 
result: 

Theorem 3. When both investors are present in the economy, the instantaneous 
interest rate is given by 

r,=p+ PYt o”Y,2(3Jm - 1) 

2tjlJry,(JE, - 1) - 8(1 + y$ cJ+rt - II2 
(21) 

Given the value of iL determined by the initial conditions of the economy (i.e., 
8 1.0. and Y,), rt depends only on the current level of aggregate consumption 
Y, (independent of the path taken to arrive at Y,). 

Before analyzing the dynamics of r,, let us examine the range within which the 
interest rate moves. Using a similar two-investor economy but one which has 
production, Dumas (1989) conjectures that the instantaneous interest rate 
rt should always lie within the range bounded by r(l) and r(‘), the values it would 
take in worlds populated by investor 1 only and investor 2 only, respectively. 
In the pure exchange economy considered here, this is generally not the case. 
Note that r(l) = p + p - a2 and r(2) = p + 4~ - 40~. If p = $a2, then 
r(l) = rC2) = p + $a2. It is easy to show that in this case, r, < r(l) = J*(~) for 
Y, E (0, co). rt reaches a unique local minimum of p + &a2 in the interval at 
Y, = 2. Thus, in the current model the interest rate with both investors present 
can move outside the range bounded by r(l) and rC2). 

In order to understand this behavior of interest rates, recall that the interest 
rates in equilibrium should make investors indifferent between consuming now 
or later. The lower the investors’ expected marginal utilities are in the next 
instant (relative to the current value), the higher the equilibrium interest rate 
should be. In other words, the equilibrium interest rate is negatively related to 
the expected growth of investors’ marginal utility as shown in (16). Consider an 
investor in the economy with utility function e -“‘u(cJ and optimal consumption 
process c,. From (12), 

r = _ Et[Ide-pfG41 w”(G) “p-- 1 c:u”‘(G) 
t e-P’zL(c,)dt PC,, -z-G 

2 
44 U’(G) 

c,t > 

where pu,,, = E,[dc,]/c,dt and & = E,[dcF]/(c:dt) are, respectively, the expected 
value and the variance of the investor’s consumption growth. Thus the interest 
rate is related to both the expected value and the variance of instantaneous 
consumption growth in equilibrium. High expected consumption growth im- 
plies low expected marginal utility in the future. The equilibrium interest rate 
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then must be high. In other words, r, increases with the expected consumption 
growth. The proportionality coefficient - c,u”(c,)/u’(c,) is the inverse of the 
elasticity of intertemporal substitution, which is also the relative risk-aversion 
coefficient a(~,) given the time-separable preferences. High variance in consump- 
tion growth, on the other hand, implies high expected marginal utility in the 
future by Jensen’s inequality, assuming that u”‘(c~) > 0, i.e., the marginal utility 
function is convex. The equilibrium interest rate then must be low. In other 
words, rf decreases with the variance of consumption growth and the propor- 
tionality constant is ctd”(ct)/~‘(ct). Since c~u”‘(c~)/u’(c~) = a(~,) [l + a(~,)] - 
c,a’(c,), the above expression can be rewritten as 

r, = P + 44 illc,t - 3 (44Cl + 441 - w’~4)& 1 
a(~,) in general depends on the consumption level, although for power utility 
functions, it is constant and a’(~,) = 0. 

When the economy is populated only by an investor with constant relative 
risk aversion a, his consumption will be the aggregate consumption, hence 
,uC,t = p and O$ = 0’. The interest rate will be r(a) = p + a~ - [(l + a)/21 cr2, 
which for a = 1 and i simplify to r(l) and r(‘), respectively. It is important to note 
that r(a) is not monotonic in a. As a increases, the elasticity of intertemporal 
substitution decreases which tends to increase the equilibrium interest rate. On 
the other hand, the risk aversion increases which tends to decrease the equilib- 
rium interest rate. For ai = 1 > uZ = 3, r(l) 3 rfz) when p 3 20” and r(l) < r(‘) 
when y < 10~. 

When the economy is populated with both investors, each investor’s con- 
sumption and marginal utility are endogenously determined. For example, 
when p < $a2, r(l) < P). If the current level of aggregate consumption is close 
to zero, the interest rate is then close to r(l). As Y, increases, investor 1 shifts his 
portfolio towards the risk-free security. His expected consumption growth 
decreases and so does its variance. The decrease in expected consumption 
growth tends to decrease the interest rate, while the decrease in the variance of 
consumption growth tends to increase the interest rate. If the effect of expected 
consumption growth dominates, the interest rate will then be less than r(l) which 
is outside the range [r(l), rc2)]. 

To further analyze this situation, consider>he representative agent. The 
consumption of the representative agent is simply the aggregate endowment 
which is exogenously specified. His relative risk-aversion coefficient a(Y,) is 
given in (18) (with ;1 = s), which is also the inverse of his elasticity of intertem- 
poral substitution. u(Y,) now varies with the consumption level. In particular, 
a(Yt) monotonically decreases with Y,, u(O) = a, = 1, u(co) = a2 = $, and 
a, < u(Y,) < a2. The interest rate given by 

[ 
Yd(Yt) 2 

r, = p + u(Y,)p - $u(Y,) 1 + a(Y,) - ~ 
4YJ 1 cr 
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is, however, nonmonotonic in Y,. Note that when ,LL > 0 and G' = 0, rt mono- 
tonically increases with Y, and rc2) = p + fp < I^~ < p + ,u = r(l). When p = 0 
and G' > 0, rt monotonically decreases with Y, and P(” = p - ~~ < 

r,<p-jG2= . ,(‘I In the general case when y > 0 and G' > 0, it is possible to 
have a(Y,) E ($, 1) and Y, < min [r(l), r@)]. Th us in this model, as Y, changes over 
time, the equilibrium interest rate can move outside the range bounded by 
r(l) and r(‘). 

The difference in the behavior of the interest rate between this model and 
Dumas’ may be due to the difference between an exchange economy and 
a production economy. This difference is best seen by considering the two 
limiting cases under certainty when 0 = 0. In a production economy, the interest 
rate is simply 1, independent of the preferences, because with production, the 
consumption process is endogenous. Under linear production technology, the 
equilibrium interest rate must equal to the intertemporal rate of transformation 
(as given by the production technology) which is ,u. In the exchange economy, 
the consumption path is exogenously specified. Given the consumption process, 
the equilibrium interest rate is p + ai~u, which does depend on investors’ prefer- 
ences. With positive growth (i.e., p > 0), the interest rate-increases with ai in this 
case. When there is uncertainty, the interest rate also depends (negatively) on the 
risk in future consumption. If o2 is large the interest rate decreases with ai due to 
the effect of risk aversion as discussed above. Thus, as ai changes, the effect on 
the interest rate may be negative in the production economy of Dumas (1989) 
while in the exchange economy considered here it is ambiguous. 

Consider now the dynamics of instantaneous interest rate. In order to simplify 
the analysis, define a new variable co, = c^r,,/Y,, which represents investor l’s 
share of aggregate consumption in equilibrium. Lemma 1, with 1. = $, implies 
that there exists the following one-to-one mapping between uL), and Y,: 

cl& = 
2(Jl+ Y, - 1) 

Yt 
or y, = 4(1 1 ot) 

at 

It maps ot E (0, 1) onto Y, E (0, m) and Y, is monotonically decreasing with 0,. 
ot --f 1 as Y, -+ 0 and ot -+ 0 as Y, + 00. The state variable of the economy can 
then be o, instead of Y,. Expressed in o,, the equilibrium interest rate is 

P 
r,=p+G-G 

2 3-20, 

(2 - co,)3 . (231 

Hence, rt depends on the growth rate of aggregate consumption as well as the 
consumption distribution across investors. Clearly, rt approaches rc2) as w, ---f 0 
while it approaches r(l) as o, -+ 1. Under certain parameter constraints, the 
interest rate is bounded below by a positive constant. For example, for 
p > G2 - &, rt 3 p + 3~ - o2 > 0. Fig. 1 plots rt as a function of 03~ for 



94 J Wang JJournal of Financial Economics 41 (1996) 75-110 

0.0295 

0.0294 

0.0293 

% 0.0292 

h 0.0291 
# 
: 0.029 
k 
I 3 0.0289 

0.0288 

; 0.0287 

! 6, 0.0286 

i 0.0285 

u 0.0284 

l .ii 0.0283 

0.0282 

0.0281 

0.028 
0 0.25 0.5 0.75 1 

relative consumption of investor 1 

Fig, 1. Instantaneous interest rate r* plotted as a function of w,, the consumption of investor 1 
relative to the aggregate consumption. The parameters are set at the following values: investors’ time 
discount coefficient p = 0.02, expected rate of aggregate consumption growth p = 0.05, instan- 
taneous standard deviation of aggregate consumption growth CT = 0.20. The instantaneous interest 
rate with only investor 1 present is I s(r) = 0.0285 and the instantaneous interest rate with only 
investor 2 present is r(‘) = 0.0294. 

a specific set of parameter values. Note that I, reaches an interior minimum 
which is smaller than both r(l) and Y(‘) as discussed earlier. 

Given the process of Y,, the dynamics of ot can be easily obtained by applying 
It8’s lemma to (22): 

do, = PL,(w) dt - ~,b,) dwt , 

where 

(24) 

Similarly, the dynamics of rt are obtained from (23): 

dr, = iudw,) dt + 44 dwt , 
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where 

95 

- Pur(W) = -&+ 075 4w) 
(2 - 0)4 

602(1- co) 1 D'w, 2 
(2-a)5 

4~) = -*+ 
(i2(5 - 40) 

(2sco)4 1 (Tco. 

Note that a,(O) = o,,(l) = 0. Thus, in the two limiting cases in which there is only 
one investor present, the interest rate is constant and its volatility is zero. When 
the two investors coexist, however, the interest rate volatility is nonzero unless 
Y, is at its local minimum value. Thus, preference heterogeneity among investors 
can increase interest rate variability. Fig. 2 plots the instantaneous drift and 
volatility of interest rate oz,, as a function of wt. Note that in the case of a local 
minimum of rt as a function of o, for w, E [0, 11, the interest rate volatility drops 
to zero at its local minimum as it should when it follows a diffusion process. 

2.5 

1 

-0.5 T 

0 0.25 0.5 0.75 1 

relative consumption of investor 1 

Fig. 2a. The instantaneous drift of the interest rate process F~,* plotted as a function of w,, the 
consumption of investor 1 relative to the aggregate consumption. The parameters are set at the 
following values: investors’ time discount coefficient p = 0.02, expected rate of aggregate consump- 
tion growth AL = 0.05, instantaneous standard deviation of aggregate consumption growth CJ = 0.20. 
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Fig. 2b. The instantaneous variance of the interest rate process gEt plotted as a function of w,, the 
consumption of investor 1 relative to the aggregate consumption. The parameters are set at the 
following values: investors’ time discount coefficient p = 0.02, expected rate of aggregate con- 
sumption growth p = 0.05, instantaneous standard deviaiton of aggregate consumption growth 
CJ = 0.20. 

4.4. Long yield 

Consider now the long yield y,(a) . From Theorem 2, we have the following 
lemma: 

Lemma 5. Given the aggregate endowment process (I) and the equilibrium bond. 
prices (19), y,(m) is a constant independent of the current value of Y,. 

As discussed earlier, when Y, becomes large (small), the investor with lower 
(higher) risk aversion dominates the economy in relative wealth and consump- 
tion. It is easy to show that for ,LL > 0~12, Y t+t will be greater than any given 
positive constant with probability one as z + co, i.e., Yt+, + cc as z -+ 00. Thus 
investor 2 will eventually own the whole economy. This seems to imply that 



long-term bond yields should be determined mainly by the preferences of 
investor 2. In other words, y(co) = y’2’(co) which is the long-term yield when the 
economy is only populated with investor 2. (The subscript t has been dropped 
given that the long yields are constant.) This, however, is not true as shown by 
the following theorem: 

Theorem 4. When both investors are present in the economy, i.e., 1, E (0, l), 

~(~3.3) = min [y”‘(m), y@‘(co)] , 

where yC1’(oo) = r(l) and y”‘(o3) = r(‘) are given in Lemma 4. 

When ,LL > sa2, y”‘(co) > y’2’(co). Then, y(a) = I’m’. When ,LL < sa2, 
y”‘(oo) < Y’~‘(w) and y(co) = y”‘(co). It is important to note that the critical 
value is $?, not 0’12. Thus under mild long-run growth (i.e., p < 5a2/4), the 
current long yields are still determined by the preferences of investor 1 even 
though his relative wealth will be negligible in the future. 

This seemingly counterintuitive result arises for the following reason. Even 
though in expectation investor 2 may eventually dominate the economy (in 
terms of his wealth and consumption), there are still possible future states of the 
economy in which investor 1 actually dominates. The probability of those states 
may be small, but the marginal utilities for consumption in these states can be 
high. Thus, these states can be very important in determining today’s asset prices 
despite their small probability of occurrence. Note that a long-term bond pays 
one unit of consumption at maturity independent of the state of the economy at 
that time. Thus it provides an instrument to hedge against future downturns of 
the economy. Of course, the probability of a severe downturn in the future 
(leading to low consumption levels) decreases with the expected long-run growth 
of the economy. Under mild growth, the probability of such a downturn is 
nontrivial. At low levels of consumption, the marginal utility of investor 1 is 
much higher than that of investor 2. Thus, a long-term bond as a hedging 
instrument is more attractive to investor 1 than to investor 2. Consequently, 
investor 1 exerts a stronger influence on its equilibrium price. The longer the 
bond’s maturity, the higher the expected wealth of investor 2 (relative to that of 
investor 1) at the maturity date and the less attractive it is to investor 2. Thus its 
price will more disproportionally reflect investor l’s preferences. Further notice 
that y(co) is independent of the wealth distribution today. This implies that 
investors with only a small proportion of the total market wealth can have 
a large effect in determining asset prices. 

The limiting result in Theorem 4 is obtained by letting maturity goes to 
infinity, given the state of the economy. The convergence of yt(r) to y(m) as 
z + co is, however, not necessarily uniform. A similar notion of long-term bond 
yield is considered in Dybvig, Ingersoll, and Ross (1995). 
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4.5. The yield curve 

For arbitrary maturity between zero and infinity, the bond yield can be 
calculated from Theorem 2. Fig. 3 plots the bond yields for a wide range of 
maturities. The parameters are set at the same values as in Figs. 1 and 2: 
p = 0.02, p = 0.05, and r~ = 0.20. It then follows that y”‘(z) = Y(I) = 0.0285 and 
y’“‘(z) = . r(‘) = 0 0294. (The subscript t has been dropped for the two limiting 
yield curves since they are constant over time.) In this case, y’“‘(z) > y”‘(r) and 
y(co) = min[y(“(co), y”‘(co)] = y”‘(co) = 0.285. 

It is seen that at any time t E (0, GO), the yield curve with both investors 
present can be downward-sloping, upward-sloping, or nonmonotonic, depending 
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Fig. 3. The bond yield y,(z) plotted against logarithm of maturity log T at different levels of current 
aggregate consumption Y, or equivalently the consumption of investor 1 relative to the aggregate 
consumption CD,. The level of Y, (or cut) is chosen to be Y, = 0.05, 1, 50 (or mt = 0.99, 0.83, 0.25) 
respectively. The parameters are set at the following values: investors’ time discount coefficient 
p = 0.02, expected rate of aggregate consumption growth p = 0.05, instantaneous standard devi- 
ation of aggregate consumption growth v = 0.20. The bond yield with only investor 1 present is 
yC1)(z) = 0.0285 and the bond yield with only investor 2 present is y@)(2) = 0.0294, both independent 
of maturity. 
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on the current level of aggregate endowment Y,. The yield curve has 
min[y”)(a), Y(~)(W)] as its asymptotic limit as the maturity increases. As Y, 
changes over time, the shape of the yield curve also changes. For Y, = 50 (i.e., 
o, = 0.25), the yield curve is downward-sloping. It lies inside the range bounded 
by the two limiting yield curves, [y”‘(r), y”‘(z)]. The yields at short maturities 
are close to y”‘(r) while the yields at long maturities decrease and approach 
y”‘(co) . For Y, = 1 (i.e., wt = 0.83), the yield curve is upward-sloping. For the 
range of maturities shown in the figure, it lies outside the range [y”‘(z), y@‘(r)] 
and is lower than y”‘(r) = 0.28. As maturity increases, the yield increases and 
approaches y”‘(co) . For Y, = 0.05 (i.e., ot = 0.99), the yield curve is nonmono- 
tonic, first decreasing and then increasing as maturity increases, and lies outside 
the range bounded by y(l) and yC2). 

Similar behavior of the yield curve is found for other parameter values. For 
certain parameter values and aggregate consumption level, the yield curve can 
exhibit a humped shape, upward-sloping at short maturities and downward- 
sloping at long maturities. 

5. Extensions and discussions 

The previous sections present a parsimonious model of the term structure of 
interest rates with heterogeneous investors. For simplicity in exposition, only 
the case of two investors (with respectively the logarithm and square-root utility 
function and the same time discount parameter) and the simple endowment 
process is considered. This section considers some extensions of the basic model. 

5.1. More general preference heterogeneity 

In the basic model, there are only two investors, one with logarithmic utility 
function and the other with square-root utility function. The equilibrium is 
tractable because closed-form solutions can be obtained for the optimal sharing 
rules given the specific preferences of the investors. Within the class of isoelastic 
utility functions, there are other combinations of the two risk-aversion coeffi- 
cients, a1 and a2, that also allow closed-form solutions to the optimal sharing 
rule. For example, when a, > a2 > 0 and al = na2 where n = 2,3,4, the situ- 
ation is similar to the basic model and a closed-form solution can be obtained 
for the optimal sharing rule and the equilibrium. 

Another extension of the model is to consider more than two investors. Again, 
consider the situation when closed-form solutions can be obtained for the 
optimal sharing rule. The following three-investor economy provides such an 
example. All investors have isoelastic utility functions with the following expo- 
nents: a1 = 2, a2 = 1, and a3 = +. More generally, for a1 > az > a3 > 0, closed- 
form solutions to the optimal sharing rule can be obtained if al/a2 and al/a3 
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belong to the set {2,3,4}. The case of four investors when 
al > a2 > a3 > a4 > 0 and a1/a2, a,/a3, and al/a4 belong to the set {2,3,4} 
also yield closed-form solutions. In the more general case with more than four 
investors within the class of power utility functions, it is more difficult to find 
closed-form solutions to the optimal sharing rule under general wealth distribu- 
tions. 

The following theorem summarizes the above discussion: 

Theorem 5. Suppose that the economy consists of I investors with power utility 
functions of the form (4). Let ai be the relative risk aversion of investor i, 
i = 1, . . . , I, and 0 < aI < ... 6 a2 < al. The optimal sharing rule has a closed- 
form solution if 

i 
al al a1 -3 - - 
al a2’ “. ’ aI I 

c (1, 2, 3,4} . 

Furthermore, the utility function of the representative agent defined by 

exhibits relative risk aversion that is bounded by a, and al, i.e., aI < - Y&(Y)/ 
u;(Y) 6 al, where Y E (0, co).’ 

The previous discussions on the behavior of bond yields in the two-investor case 
can easily be extended to the multiple-investor case here. The qualitative results 
are similar. 

5.2. More general endowment processes 

In the basic model, the special case of geometric Brownian motion is con- 
sidered for the aggregate endowment in the two-investor economy. The simple 
process was chosen in order to illustrate the effect of heterogeneity in investor 
preferences on asset prices, in particular, bond prices and the term structure of 
interest rates. Since the aggregate endowment Y, is the single variable that 
drives the economy, all asset prices have one explanatory factor. Price changes 
of bonds with different maturities are perfectly correlated. This section provides 
some generalizations of the previous endowment process in order to relax its 
restrictive nature. The resulting term structures will depend on multiple factors. 

‘The last part of the theorem was first suggested to me by Chi-fu Huang. Bruce Grundy later 
brought to my attention the work of Benninga and Mayshar (1993) of which this is a special case. 
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For simplicity in notation, define y, = logy,. The endowment process is as 
follows: 

dyt = CM - BY, + z,ldt + adw, it = o = YO , (27) 

dz, = - z,dt + aZdw,,t, z,=o = zo, t E [O, 00) . (28) 

w and w,,~ are two independent standard Wiener processes, and a, j?, IT, and 
rrZ are nonnegative constants. Although for simplicity in exposition wt and 
w,,* are assumed to be independent, this assumption can be easily relaxed. z, is 
assumed to be a standard Ornstein-Uhlenbeck process. (There is no loss of 
generality by making the negative coefficient of the linear drift to be - 1.) The 
linear system [y,, z,] contains several interesting special cases. For example, 
fl = 0 and zt = 0 (i.e., when z. = 0 and D, = 0) reduce to the simple case 
considered in previous sections where y, follows a simple Brownian motion with 
constant drift CI (CI = p - a2/2). When /I > 0 and zt E 0, y, follows an Ornstein- 
Uhlenbeck process which is stationary. When 1 = 0, yt has a drift linear in z,. 
Since z, is stationary and has an unconditional mean of zero, c( gives the 
long-run growth of yt and z, the transitory growth of y,. The aggregate consump- 
tion process in this case is quite similar to the case considered in Cox, Ingersoll, 
and Ross (1985a) and Sun (1992). 

Lemma 6. The solution to the linear system (27)-(28) is 

s 
t+r 

yt+? = y, + pUt(r) + CT ePP(t+r-s)dws 
t 

Ce- 
/%t+r-s) _ e-@+r-s)] dw 

z,s > 

s 
ttr 

zt+t = e -TZ* + cz e -@+s)dwz sl 
t 

where 

,u*(z) = cc - y, (1 -e-Or) + 
( 1 P 

L(e-8’-e-y 
1-B 

Let g,(z) = Y,,,/Y, = eye+rpJil and 

c(r)=$(l-e~l”,)+& 
i 

1 -e-2a’ 1 -e-2r 
28 fT- 

2[1-e-(l+!3q 

I l-t/? . 

Conditional on [y,, z,], logg,(z) = y*+, - y, is normally distributed and 
E,Clogg,(41 = 14% var,Clogd41 = d4. 
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Now consider the equilibrium and bond prices under the current endowment 
process. Given that the state of the economy is characterized by [vt, z,], more 
traded securities are needed in addition to the stock and the (locally) risk-free 
security in order to make the financial market dynamically complete. Without 
further specification, assume that enough securities are traded so that the 
market is complete. Following the same steps as in Section 3 gives the same 
sharing rules between the two investors and the same pricing equations in terms 
of Y, and g,(r). Bond prices are then calculated by applying the pricing equation 
(15). The results are summarized in the following lemma and theorem. 

When only one of the two investors is present in the economy, the resulting 
term structures of interest rates are reminiscent of those in the Cox, Ingersoll, 
and Ross (1985a) model. 

Lemma 7. Given the aggregate endowment process as speci$ed in Lemma 6, the 
bond prices and yields in the two limiting cases are 

where put(z) and v(z) are given in Lemma 6. The corresponding instantaneous 
interest rates and the long yields are 

rii) = p + ai [a - /?y(t) + z,] - $g2, 

where i = 1,2. 

When /? = 0, the result is the special case that is very similar to the Cox, 
Ingersoll, and Ross model except that the interest rate follows the linear 
Ornstein-Uhlenbeck process here while in their model it follows the square-root 
process. In this case, the growth rate of the economy depends only on zt, not on 
the size of the economy yt. The current model obtains the single-factor structure 
for bond prices when investor preferences are homogeneous. Similar to the Cox, 
Ingersoll, and Ross model, the term structure can exhibit rich patterns even 
under this one-factor structure. 

When both investors are present in the economy, the following theorem holds: 

Theorem 6. Let j’&z) = {n - 1 + [,uut(z) + y,]/v(z)) Jv(z). Given the endowment 
process (27)-(28), the bond prices with both investors present are given as follows: 

B,(z) = eppr(JGE - 1) [~I,&) + 12,&)1 , 



J. Wang/Journal of Financial Economics 41 (1’996) 75-110 103 

where 

1d4 = e -<I,, ‘CZ,J;T;i > 

I2 t(z) = e- bt(r)+Y,l~/245) n~oa,{e-‘Nj[ - 4&T)] 

+ e~5f,l-..~c~)di[51,2-n,t(~)]) , 

and 01,, n = 0, 1, . . . , @(.), are defined in Theorem 2. Furthermore, the instan- 
taneous interest rate is given by 

r,=p+ 
(u - PYt + ZJYt 02Y,[Y,2 - 2(4- - l)“] 

2JizQJ1+yt - 1) - 8(1 + Y,)QJGy - 1)3 

The long yield ~~(a) is a constant independent of yt and zl, and is given by 

y(co) = min [y(i)(co), y’2’(oo)] , 

where y@‘(a) and y’2’(co) are given in Lemma 7. 

The endowment process defined by (27)-(28) is Gaussian. It leads to normal 
distributions for the growth rate of the economy over any finite periods, 
permitting the calculation of bond prices. However, it is easy to see from the 
calculations that more general (non-Gaussian) processes can be considered for 
the aggregate endowment. One example is the following square-root process: 

dyt = (a - PYW + q’ti dw, Yo 3 0, t 6 co, ao) > (29) 

where a ( Z 0) and /3 are constants. This process is reminiscent of the process of 
aggregate endowment assumed in the Cox, Ingersoll, and Ross model. It is easy 
to show that under (29), 

$1 = p + aicx - ai(j + af)o’y, . 

Since y, 3 0, rci) t > 0 if k = - fl - a? > 0. Defining I”ii) = rji) - (p + ai&) , 

,,$q,.!pq dt + (o/G) fldw, 

I’ji’ will be nonnegative (if it starts from nonnegative values). Cox, Ingersoll, and 
Ross provide a thorough examination on the properties of process (29) or (30). 

When both investors are present, m, = e-@/(Jm - 1). Simply apply 
Theorem 1 to derive the equilibrium interest rate. Since the probability density 
of yt+i conditional on y, (with z 3 0) can be calculated in closed form, the bond 
prices can be calculated in the same way as in Theorem 2 (these calculations are 
omitted here). 
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5.3. Stationarity 

One unattractive feature of the current model is its long-run behavior. With 
positive growth, the economy will eventually be dominated by the less risk- 
averse investor. The steady state distribution of bond yields will then simply be 
the one when only the less risk-averse investor is present. In other words, the 
importance of investor heterogeneity will eventually disappear. Although sta- 
tionary distributions of bond yields can be obtained in which the effect of 
heterogeneity remains important, it requires the stationarity of the endowment 
process. This feature is particularly undesirable for the empirical implementa- 
tion of the model given the positive growth observed in the data. 

One way to allow positive growth of the aggregate endowment and to 
maintain the importance of investor heterogeneity in the steady state (in terms of 
the distribution of bond yields) is to relax the assumption that the time discount 
parameters of the two investors are the same and to modify the aggregate 
endowment process. Let pi, i = 1,2, be the time discount parameter of investor i. 
It is easy to show that the optimal sharing rule now is 

c^l,C(YA = &) c&m% - 11, c^2,*(Yt, 4 = yt - c*l,dY,> 4 > 

where b(t) = boe-2(p’-P1)f and b0 = 4(1- ,?)“/A”. The marginal utility of the 
representative agent m, now has the form 

e-(2P2-Pl)t 
112, = 

1 + ~Oe-2(Pz-P1)~yt _ 1 . 

In order to maintain the importance of investor heterogeneity in the steady 
state, e -2(p2-P1)*Yt must be stationary. Instead of assuming a geometric 
Brownian motion for Y,, Y, can be trend-stationary, i.e., Y, E e’P-fu’)f+Y’ and 
y, follows a stationary process such as an Ornstein-Uhlenbeck process as 
discussed in Section 5.2. A further assumption is that p - 02/2 = 2(p2 - pl). 
Thus, for pZ - p1 > 0, positive growth can be allowed in the model and the 
steady state of the equilibrium does not degenerate to the case with only one 
investor.6 

It should be pointed out that this is a knife-edge case. When pZ - p1 > 0, only 
the growth at ,u = 0’12 + 2(p2 - pr) gives the desirable behavior in the long run. 
One remedy to this situation is to consider preferences that are time-nonsepar- 
able. For example, one can endogenize the time discount parameter by making 
it depend on past consumption. (High levels of past consumption lead to large 

61 thank George Constantinides for pointing out a problem with the stationary distributions of 
consumption distribution and state prices when Y, follows Geometric Brownian motion. 
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values of the time discount parameter.) The development of a detailed model of 
this type will not be further pursued here. For models with time nonadditive 
preferences under certainty, see, e.g., Koopmans (1962), Uzawa (1965), and 
Lucas and Stokey (1984). 

6. Further comments 

Section 4 only considers the prices of pure discount bonds. Eq. (20) can be 
used to price any security given its payoff stream. In particular, the equilibrium 
stock price derived in Theorem 1 is given by the following expectation: 

02 
S, = S(Y,) = (Jm - 1) e-@E,Jmdz 

0 1 
Clearly, the current stock price is only a function of the current level of aggregate 
consumption (given the initial conditions of the economy). In the two limiting 
cases, the corresponding stock prices are, respectively, Sir’ = S’i’(Y,) = YJp and 
p = $2’(yt) = y,/(p) - p + $0”). It is easy to show that S(Y) --j S’l’( Y) when 
Y --f 0 and S(Y) --+ S”‘(Y) when Y + co. Note that from (16), S(Y) satisfies the 
following ordinary differential equation: 

$A!T’(Y) + [pY - cm(Y)]S’(Y) - r(Y) S(Y) + Y = 0 

Thus the stock price is given by the solution to this equation with the above 
boundary conditions (see Wang, 1994, for a more detailed discussion). 

The current price of a European call option on a pure discount bond, c(B, t; 
K 4, is simply E,C(m,+,lm)c(& t + 7; K 011, w h ere K is the strike price of the 
option, z the maturity of the option, B,(T) the price of the discount bond with 
same maturity, and c(B, t + T; K, 0) the terminal payoff of the option. With some 
algebra, the conditional expectation can be explicitly calculated. 

The basic model is presented in a continuous-time setting. This is purely for 
mathematical convenience. The model can also be presented in a discrete-time 
setting and most of the results remain the same. As pointed out by Sun (1992) in 
the case of the Cox, Ingersoll, and Ross (1985a) model, the discrete-time 
representation may be easier to estimate empirically, especially in the presence 
of general nominal shocks. Similar arguments can be made here, although 
a detailed discussion on this issue is outside the scope of this paper. 

Appendix 

This appendix provides proofs to some of the results in the text. The proofs 
are only for the basic model. Extensions to more general endowment processes 
are straightforward. 
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For convenience, let the continuous-time economy be defined on the finite 
time span [0, T]. The uncertainty and the information structure are represented 
by a filtered, complete probability space (52,9, F, P) on which a one-dimen- 
sional Brownian motion w,, t E [0, T], is defined. The filtration F = 
[FE, t E [0, T 1) is the augmentation under P of the filtration generated by w. 
For a reference of the terminology used here, see, e.g., Duffie (1992). 

The consumption space C+ is defined as the set of positive, adapted consump- 
tion rate process that satisfy (3). The securities market consists of the (locally) 
risk-free security which pays a sure interest rt and the stock which pays dividend 
at rate Y, and is traded at (ex-dividend) price S,. Y, is given by (2). The trading 
strategy (ct, 6) is a two-dimensional predictable process adapted to FZ where 
CI, denotes holdings of the risk-free security and Bt denotes holdings of the 
stock. A trading strategy is admissible if it satisfies condition (4) and 
W, = ~1, + BJ, 3 0, t E [0, T]. Let 0 denote the set of admissible trading 
strategies. A consumption/trading strategy is budget-feasible if 

wT= wo+ 
I 

T {a,r,dt + B,(Y,dt + dS,) - c,dt} . 
0 

Investors’ preferences are given in (4) which are continuous, smooth, and 
strictly concave. Investors’ initial endowments are in shares of the stock, 
(0,8&, i = 1,2, and ciei,o_ = 1. 

Proof of Lemma 2. Let ui(c) = Eo[j~ePpt (ciMai - l)/(l - ai)dt], auf(c) = 
e-P’C-ai and 4.c = E,[~~~,c,dt]. It must be shown that & = 

ePPL(Jk - 1)/(,/m - 1) is the pricing function that supports an 
Arrow-Debreu equilibrium given an optimum (i?l, CnJ. Clearly, 4 > 0. Further- 
more, MC E C+ such that U<(c) > Ui(?i) [i = 1, 21, &(~^J.(c - ?i) > 0 since Ui is 
strictly concave. Note that 40.t = (dm - l)aui(c*J. Thus, 4.c > I$.&. 
This completes the proof. 

Proof of Lemma 3. To show that the price processes given in (12) characterize 
an equilibrium requires showing that (a) (&, (ai> oi)) is a budget-feasible con- 
sumption/trading strategy for each investor i and (b) any other admissible 
trading strategies that yield higher expected utility are not budget-feasible. For 
(a), first note that (dl, 0,) and (aZ, &) given in Theorem 1 are admissible 
(WI,,, Wz,t > 0 and the corresponding gain processes are integrable). Next, to 
show that (pi, (&, oi)), i = 1, 2, is budget-feasible, I use the standard equivalent 
martingale approach. Let Q be a measure on the space (a, 9) defined by its 
Radon-Nikodym derivative with respect to P: dQ/dP = 4 (T, w). Clearly, Q and 
P are equivalent measures. It can be shown that the gain process of any 
admissible trading strategy, defined as ar, dt + f3,[ Y,dt + d&l, is a martingale 
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under Q. For WT = 0, the budget-feasibility of a consumption/trading policy 
(c, (a, 0)) under Q becomes 

T 

W,,=E; 
I I 

ctdt , 
0 

where E* denotes the expectation under Q. It is easy to verify that this is true for 
(c^i, (& e^,)) , i = 1, 2. For (b), note that for any consumption strategy c financed 
by (a, e), q(c) > Ui(c^;) implies that Cp,c > c$.&. Thus, Ec[Jictdt] > 

E; [S,‘c^i,tdt] = Wi,oy i.e., c is not budget-feasible. This completes the proof. 

Proof of Theorem 2. Since g,(z) is log-normally distributed, gt(T) = eP(*)+5(‘)” 
where ,u(z) = (,u - $02)r, a(z) E @J z, and 5-A”(0, 1). The calculation of II,,(z) 
is trivial. For Iz,*(z), 

where 6,(z) = [(p - fo”)z + log Y,]/( 0 z an 2 ) d a,,, n = 0, . . , are the coefficients 
of the Taylor expansion of m. Let &Jr) = ~(7.) [n - 1 + 6,(z)]. It is easy to 
show that 

= ,-tww +jin,zw @ [ _ c’,(t, z)] ) 

s 
m e-(“+f)[s,(r)+-/a(z)]u”Te-f&‘- 
- W,Mr) ; 

_ -f d,(T)2& + +6 u-“,~(d2 CD [[Ii2 -&)] ) 
where Q(z) = (l/fi)s” co ePfX’d.x. This yields the results in Theorem 2. 
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P~oofof Theorem 4. When z % 1, P(T) B 1 and (~~(2) s 1. Rewrite I&) as 

- E” + Ed -+‘(T) ~ [&’ - +(T)]” &’ 
> 

where the last equation is obtained by the change of variable E’ = a + g(z). 
Observing that when d % 1, 

m 
= 

s 

2Jv 

mrnF + J,m + Je-xZ + Ce-(x-d)zdx ’ ” 

This then implies that for d $ 1, 

m 
i m fi + ce-(“-d’2dXz 

-CC s [&?+&=@]dx. 
-CC 

Applying this approximation to the Z,(t, r) when z $ 1, 

12,,(~)~max[e~B(~)+foZ(“), pg e-fPw~o’(q 

Theorem 4 follows then immediately. 

Proof of Theorem 5. The optimal sharing rule is obtained by solving the 
following optimization problem: 

l-a,-1 

SUpili ’ 1 _ a, 2 
sic;} i I 

subject to 

ci 3 0, Vi = 1, . . , I, and i ci = Y , 
i=l 

where al 3 a2 3 ... > aI > 0, i = 2, . . . , I. Given the strict concavity of the 
objective function and the linear constraints, there is a unique solution to the 
maximization problem. The corresponding first-order conditions are 
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Then, 

3, l/a, 
q= 2 

0 
ali& 

11 c1 ’ 
i=2, . . ..I. 

From the resource constraint, 

When {al/al, al/az, . . . , aI/aI} G { 1,2,3,4}, the above equation is a fourth- 
order polynomial equation and has closed form solutions. The unique solution 
that guarantees 0 < cl < Y gives the optimal sharing rule. 
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