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We analyze how asymmetric information and imperfect competition affect liquidity and
asset prices. Our model has three periods: Agents are identical in the first, become
heterogeneous and trade in the second, and consume asset payoffs in the third. We show
that asymmetric information in the second period raises ex ante expected asset returns
in the first, comparing both to the case where all private signals are made public and
to that where private signals are not observed. Imperfect competition can instead lower
expected returns. Each imperfection can move common measures of illiquidity in opposite
directions. (JEL D43, D82, G12, G14)

Financial markets deviate, to varying degrees, from the perfect-market ideal in
which there are no impediments to trade. A large body of empirical work has
quantified these deviations using various measures of illiquidity, and has linked
illiquidity to expected asset returns. While theoretical work has provided
useful guidance on the empirical findings, the guidance has been incomplete,
especially concerning the relationship between illiquidity and expected returns.

Consider, for example, asymmetric information, a market friction that has
been studied extensively in the literature. Seminal papers byGlosten and
Milgrom (1985) and Kyle (1985) have shown that asymmetric information
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is positively related to illiquidity as measured by the bid-ask spread and by
Kyle’s lambda (price impact). In these articles and most of the subsequent
literature, however, market makers are risk neutral, are competitive, and can
take unlimited positions. Hence, the autocovariance of asset returns, which is
also a widely used measure of illiquidity, is zero. Moreover, expected asset
returns are equal to the riskless rate. These articles thus offer little guidance on
what the empirical relationship between illiquidity and expected returns should
be under asymmetric information.

Few articles, to our knowledge, study the effect of asymmetric information
on expected returns.O’Hara(2003) andEasley and O’Hara(2004) show in a
multi-asset extension ofGrossman and Stiglitz(1980) that prices are lower and
expected returns higher when agents receive private signals than when signals
are public. This comparison, however, is driven not by asymmetric information
per se but by the average quality of agents’ information. Indeed, while prices
in their model are lower under asymmetric information than when signals
are public, they are higher than under the alternative symmetric-information
benchmark where no signals are observed.Garleanu and Pedersen(2004)
show in a model with risk-neutral agents and unit demands that asymmetric
information can raise or lower expected returns, with the effect being zero
when probability distributions are symmetric—as is the case under normality,
an assumption used in much of the literature. These articles thus suggest an
ambiguous effect of asymmetric information on expected returns.1

In this article, we study how asymmetric information affects liquidity and
expected returns. Our model builds on Grossman and Stiglitz’s canonical
framework, and thus assumes normality. We replace the noise traders in
Grossman and Stiglitz with rational hedgers. More importantly, we examine
how the effects of the asymmetric-information friction are priced in an ex
ante period, in a spirit similar to Garleanu and Pedersen, and to much of the
earlier literature on transaction costs (e.g.,Amihud and Mendelson 1986). Our
model can incorporate a variety of market frictions in addition to asymmetric
information. In particular, we also study the impact of imperfect competition,
a friction closely related to asymmetric information since large traders, whose
trades can move prices, are often privately informed (e.g.,Kyle 1985).2

We show three main results. First, asymmetric information raises expected
returns, compared both with a symmetric-information benchmark where all
private signals are made public and with one where private signals are not
observed. Second, asymmetric information and imperfect competition raise

1 See alsoEllul and Pagano(2006), who show that asymmetric information in the post-IPO stage can reduce the
IPO price. Their post-IPO stage involves exogenous noise traders and an insider who is precluded from bidding
for the IPO. So, the IPO price is influenced only by a subset of agents trading in the post-IPO stage.

2 A previous version of this article (Vayanos and Wang 2010) also considers participation costs, transaction costs,
leverage constraints, and search frictions.
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Kyle’s lambda but can bring the autocovariance of asset returns closer to
zero. Thus, lambda reflects both frictions more accurately than autocovariance.
Third, imperfect competition can lower expected returns.

Our results imply that the empirical relationship between illiquidity and
expected returns is sensitive to the underlying imperfection and to the measure
of illiquidity being used. For example, if illiquidity is measured by lambda, the
relationship with expected returns is positive under asymmetric information
but can turn negative under imperfect competition. Moreover, the relationship
can turn negative even under asymmetric information, if illiquidity is measured
by autocovariance.

Our model has three periods,t = 0, 1, 2. In Periods 0 and 1, risk-averse
agents can trade a riskless and a risky asset that pay off in Period 2. In Period
0, agents are identical, so no trade occurs. In Period 1, agents can be one of
two types: liquidity demanders who will receive in Period 2 an endowment
covarying with the risky asset’s payoff, and liquidity suppliers who will receive
no endowment. The covariance between the endowment and the risky asset’s
payoff is privately observed by liquidity demanders and is the source of trade.
When, for example, the covariance is positive, liquidity demanders are overly
exposed to the risk that the risky asset’s payoff will be low, and hedge by
selling that asset. Frictions concern trade in Period 1. In the case of asymmetric
information, liquidity demanders can observe in Period 1 a private signal about
the payoff of the risky asset. In the case of imperfect competition, liquidity
demanders can collude and behave as a single monopolist in Period 1. We
study the effects of each friction in isolation and of both simultaneously.

We measure illiquidity using lambda and price reversal. We define lambda
as the regression coefficient of the price change between Periods 0 and 1
on liquidity demanders’ signed volume in Period 1. Lambda characterizes
the price impact of liquidity demanders’ trades. In our model, these trades
can be motivated by hedging or information, and their price impact has a
transitory and a permanent component. We define price reversal as minus the
autocovariance of price changes. Price reversal characterizes the importance
of the transitory component in price, which in our model is entirely driven
by volume. Both measures are positive even in the absence of imperfections.
Indeed, because agents are risk averse, liquidity demanders’ trades move the
price in Period 1 (implying that lambda is positive), and the movement is
away from fundamental value (implying that price reversal is positive). We
examine how each imperfection impacts the two measures of illiquidity and
the expected return of the risky asset. To determine the effect on expected
return, we examine how the price in Period 0 is influenced by the anticipation
of imperfections in Period 1.

Our first main result is that asymmetric information raises the expected
return of the risky asset. We compare with two symmetric-information bench-
marks: the no-information case, where information is symmetric because
no agent observes the private signal available to liquidity demanders in
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Period 1, and the full-information case, where all agents observe that signal.
We consider both benchmarks so that the effects of asymmetric information
are purely driven by the dispersion in information across agents and not by any
changes in the average quality of information.

The expected return of the risky asset is higher under full information than
under no information. This result is related to theHirshleifer (1971) effect,
which is that public revelation of information can reduce the welfare of all
agents because it hampers risk sharing. We derive the implications of the
Hirshleifer effect for asset pricing, showing that the reduced risk sharing in
Period 1 renders agents less willing to buy the asset in Period 0. Indeed, agents
are concerned in Period 0 that the endowment they might receive in Period
1 will increase their existing risk exposure. Therefore, if they are less able to
hedge in Period 1, they are less willing to take risk in Period 0 and require
a higher expected return. When information is asymmetric, the quality of
publicly available information (revealed through the price) is between the two
symmetric-information benchmarks, so one might expect the expected return
to be also in between. The expected return is higher, however, than under either
benchmark. This is because risk sharing in Period 1 is further hampered by the
unwillingness of the uninformed to accommodate the trades of the informed.

Our second main result is that both asymmetric information and imperfect
competition increase lambda but can reduce price reversal (i.e., render the
autocovariance less negative). A discrepancy between these measures of illiq-
uidity can arise because lambda measures the price impact per unit trade, while
price reversal concerns the impact of the entire trade. Market imperfections
generally raise the price impact per unit trade, but because they also reduce
trade size, the price impact of the entire trade can decrease.

Our third main result is that imperfect competition by liquidity demanders
can lower the expected return of the risky asset. Intuitively, since noncompet-
itive liquidity demanders can extract better terms of trade in Period 1, they
are less concerned with the event where their risk exposure increases in that
period. Therefore, they are less averse to holding the asset in Period 0.

While we focus mainly on the positive analysis of imperfections, our model
is also suitable for a normative analysis. We illustrate the normative analysis in
the case of asymmetric information. We show that asymmetric information
makes both liquidity demanders and suppliers worse off relative to either
symmetric-information benchmark—i.e., no information and full information.

The perfect-market benchmark version of our model borrows fromLo,
Mamaysky, and Wang(2004) andHuang and Wang(2009, 2010). As in these
articles, agents receive endowments correlated with the payoff of a risky asset,
and the expected return compensates them for the risk that their exposure to
that asset will increase. None of these articles, however, consider asymmetric
information or imperfect competition.

The equilibrium in Period 1 with asymmetric information is closely related
to Grossman and Stiglitz(1980). We model, however, non-informational
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trading through random endowments, as in the differential-information model
of Diamond and Verrecchia(1981), rather than through a random asset supply.
The results on how the asymmetric-information friction is reflected in ex
ante prices and expected returns (Period 0 equilibrium) are new, and so are
the results on how asymmetric information affects price reversal. Subsequent
work by Qiu and Wang(2010) shows that asymmetric information can raise
expected returns and lower welfare in an infinite-horizon setting and under
a more general information structure than ours. These results, which are
numerical, indicate that the closed-form results of our three-period model are
more general.

The equilibrium in Period 1 with imperfect competition is closely related
to Bhattacharya and Spiegel(1991), who assume that an informed monopolist
with a hedging motive trades with competitive risk-averse agents.3 The results
on how the imperfect-competition friction is reflected in ex ante prices and
expected returns (Period 0 equilibrium) are new, and so are the results on how
imperfect competition affects price reversal.

The result that asymmetric information can make all agents worse off goes
back to Akerlof (1970) and Glosten and Milgrom(1985), who show that
asymmetric information can cause market breakdowns. In our model, there
are no market breakdowns, and the trading mechanism is a Walrasian auction.
Within a Walrasian auction model,Rahi (1996) shows that a hedger prefers
to issue an asset about which he has no information rather than one about
which he is informed. We consider instead the welfare of both informed
and uninformed agents, and compare asymmetric information with both no
information and full information.4

The rest of this article is organized as follows. Section1 presents the
model. Section2 treats the perfect-market benchmark. Sections3 and4 add
asymmetric information and imperfect competition, respectively. Sections5
and6 discuss empirical and welfare implications, respectively, and Section7
concludes. All proofs are in an online Appendix.

1. Model

There are three periods,t = 0, 1, 2. The financial market consists of a riskless
and a risky asset that pay off in terms of a consumption good in Period 2. The
riskless asset is in supply ofB shares and pays off one unit with certainty. The
risky asset is in supply of̄θ shares and pays offD units, whereD has meanD̄

3 Strategic behavior under asymmetric information has mainly been studied in a setting introduced byKyle (1985),
where strategic informed traders trade with competitive risk-neutral market makers and noise traders. See also
Glosten and Milgrom(1985), Easley and O’Hara(1987), andAdmati and Pfleiderer(1998).

4 See Dow and Rahi(2000) and Marin and Rahi(2000) for further results on financial innovation under
asymmetric information, andLiu and Wang(2010) for a market-maker model in which asymmetric information
can make the informed agents worse off.
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and varianceσ 2. Using the riskless asset as the numeraire, we denote bySt the
risky asset’s price in Periodt , whereS2 = D.

There is a measure one of agents, who derive utility from consumption in
Period 2. Utility is exponential,

− exp(−αC2), (1.1)

whereC2 is consumption in Period 2, andα > 0 is the coefficient of absolute
risk aversion. Agents are identical in Period 0 and are endowed with the per-
capita supply of the riskless and the risky asset. They become heterogeneous
in Period 1, and this generates trade. Because all agents have the same
exponential utility, there is no preference heterogeneity. We instead introduce
heterogeneity through agents’ endowments and information.

A fractionπ of agents receive an endowmentz(D − D̄) of the consumption
good in Period 2, and the remaining fraction 1− π receive no endowment.
The variablez has mean zero and varianceσ 2

z , and is independent ofD. While
the endowment is received in Period 2, agents learn whether or not they will
receive it before trade in Period 1, in an interim periodt = 1/2. Only those
agents who receive the endowment observez, and they do so in Period 1. Since
the endowment is correlated withD, it generates a hedging demand. When, for
example,z > 0, the endowment exposes agents to the risk thatD will be low,
and agents hedge against that risk by selling the risky asset. We assume that the
endowment is perfectly correlated withD for simplicity; what matters for our
analysis is that the correlation is nonzero. We denote byWt the wealth of an
agent in Periodt . Wealth in Period 2 is equal to consumption—i.e.,W2 = C2.

For tractability, we assume thatD andz are normal. Under normality, the
endowmentz(D − D̄) can take large negative values, and this can generate an
infinitely negative expected utility. To guarantee that utility is finite, we assume
that the variances ofD andz satisfy the condition

α2σ 2σ 2
z < 1. (1.2)

In equilibrium, agents receiving an endowment initiate trades with others to
share risk. Because the agents initiating trades can be thought of as consuming
market liquidity, we refer to them as liquidity demanders and denote them by
the subscriptd. Moreover, we refer toz as the liquidity shock. The agents who
receive no endowment accommodate the trades of liquidity demanders, thus
supplying liquidity. We refer to them as liquidity suppliers and denote them by
the subscripts.

Because liquidity suppliers require compensation to absorb risk, the trades
of liquidity demanders affect prices. Therefore, the price in Period 1 is
influenced not only by the asset payoff, but also by the liquidity demanders’
trades. Our measures of liquidity, defined in Section2, are based on the price
impact of these trades.
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Liquidity and Asset Returns

The assumptions introduced so far describe our model’s perfect-market
benchmark, to which we subsequently add asymmetric information and im-
perfect competition.5 We maintain the perfect-market assumption in Period 0
when determining the ex ante effect of the imperfections—i.e., how the antic-
ipation of imperfections in Period 1 impacts the Period 0 price. Imperfections
in Period 0 are, in fact, not relevant in our model because agents are identical
in that period and there is no trade.

We model asymmetric information through a private signals about the asset
payoff D that some agents observe in Period 1. The signal is

s = D + ε, (1.3)

whereε is normal with mean zero and varianceσ 2
ε , and is independent of

(D, z). We assume that only those agents who receive an endowment observe
the signal—i.e., the set of informed agents coincides with that of liquidity
demanders. Assuming that all liquidity demanders are informed is without
loss of generality: Even if they do not observe the signal, they can infer it
perfectly from the price because they observe the liquidity shock. Asymmetric
information can therefore exist only if some liquidity suppliers are uninformed.
For simplicity, we assume that they are all uninformed.

We model imperfect competition by assuming that some agents can collude
and exert market power in Period 1. We focus on the case where liquidity
demanders collude and behave as a single monopolist, but we also consider
more briefly monopolistic behavior by liquidity suppliers. We consider both
the case where liquidity demanders have no private information on asset
payoffs, and so information is symmetric, and the case where they observe
the private signal (1.3), and so information is asymmetric.

2. Perfect-market Benchmark

In this section, we solve our model’s perfect-market benchmark. We first
compute the equilibrium, going backward from Period 1 to Period 0. We next
construct measures of market liquidity in Period 1, and study how liquidity
impacts the price dynamics and the price level in Period 0.

2.1 Equilibrium
In Period 1, a liquidity demander chooses holdingsθd

1 of the risky asset to
maximize the expected utility (1.1). Consumption in Period 2 is

Cd
2 = W1 + θd

1 (D − S1) + z(D − D̄),

5 Our perfect-market benchmark has one market imperfection built in: Agents cannot write contracts in Period
0 contingent on whether they are a liquidity demander or supplier in Period 1. Thus, the market in Period 0 is
incomplete in the Arrow-Debreu sense. If agents could write complete contracts in Period 0, they would not need
to trade in Period 1, in which case liquidity would not matter. In our model, complete contracts are infeasible
because whether an agent is a liquidity demander or supplier is private information.
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i.e., wealth in Period 1, plus capital gains from the risky asset, plus the
endowment. Therefore, expected utility is

−E exp
{
−α

[
W1 + θd

1 (D − S1) + z(D − D̄)
]}

, (2.1)

where the expectation is overD. BecauseD is normal, the expectation is equal
to

− exp
{
−α

[
W1 + θd

1 (D̄ − S1) − 1
2ασ 2(θd

1 + z)2
]}

. (2.2)

A liquidity supplier chooses holdingsθs
1 of the risky asset to maximize the

expected utility

− exp
{
−α

[
W1 + θs

1(D̄ − S1) − 1
2ασ 2(θs

1)2
]}

, (2.3)

which can be derived from (2.2) by setting z = 0. The solution to the
optimization problems is straightforward and summarized in Proposition2.1.

Proposition 2.1. Agents’ demand functions for the risky asset in Period 1 are

θs
1 =

D̄ − S1

ασ 2
, (2.4a)

θd
1 =

D̄ − S1

ασ 2
− z. (2.4b)

Liquidity suppliers are willing to buy the risky asset as long as it trades
below its expected payoff̄D, and are willing to sell otherwise. Liquidity
demanders have a similar price-elastic demand function, but are influenced
by the liquidity shockz. When, for example,z is positive, liquidity demanders
are willing to sell because their endowment is positively correlated with the
asset.

Market clearing requires that the aggregate demand equals the asset
supplyθ̄ :

(1 − π)θs
1 + πθd

1 = θ̄ . (2.5)

Substituting (2.4a) and (2.4b) into (2.5), we find

S1 = D̄ − ασ 2 (θ̄ + πz
)
. (2.6)

The price S1 decreases in the liquidity shockz. When, for example,z is
positive, liquidity demanders are willing to sell, and the price must drop so
that the risk-averse liquidity suppliers are willing to buy.
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In Period 0, all agents are identical. An agent choosing holdingsθ0 of the
risky asset has wealth

W1 = W0 + θ0(S1 − S0) (2.7)

in Period 1. The agent can be a liquidity supplier in Period 1 with probability
1 − π , or liquidity demander with probabilityπ . Substitutingθs

1 from (2.4a),
S1 from (2.6), andW1 from (2.7), we can write the expected utility (2.3) of a
liquidity supplier in Period 1 as

− exp
{
−α

[
W0 + θ0(D̄ − S0) − ασ 2θ0(θ̄ + πz) + 1

2ασ 2(θ̄ + πz)2
]}

.

(2.8)

The expected utility depends on the liquidity shockz sincez affects the price
S1. We denote byUs the expectation of (2.8) overz, and byUd the analogous
expectation for a liquidity demander. These expectations are agents’ interim
utilities in Period 1/2. An agent’s expected utility in Period 0 is

U ≡ (1 − π)Us + πUd. (2.9)

Agents chooseθ0 to maximizeU . The solution to this maximization problem
coincides with the aggregate demand in Period 0, since all agents are identical
in that period and are in measure one. In equilibrium, aggregate demand has to
equal the asset supplȳθ , and this determines the priceS0 in Period 0.

Proposition 2.2. The price in Period 0 is

S0 = D̄ − ασ 2θ̄ −
π M

1 − π + π M
11θ̄ , (2.10)

where

M = exp
(

1
2α12θ̄

2
)
√

1 + 10π2

1 + 10(1 − π)2 − α2σ 2σ 2
z

, (2.11)

10 = α2σ 2σ 2
z , (2.12a)

11 =
ασ 210π

1 + 10(1 − π)2 − α2σ 2σ 2
z

, (2.12b)

12 =
ασ 210

1 + 10(1 − π)2 − α2σ 2σ 2
z

. (2.12c)

The first term in (2.10) is the asset’s expected payoff in Period 2, the second
term is a discount arising because the payoff is risky, and the third term is a
discount due to illiquidity (i.e., low liquidity). In the next section, we explain
why illiquidity in Period 1 lowers the price in Period 0.
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2.2 Illiquidity and its effect on price
We construct two measures of illiquidity, both based on the price impact of the
liquidity demanders’ trades in Period 1. The first measure, to which we refer
as price impact, is the coefficient of a regression of the price change between
Periods 0 and 1 on the signed volume of liquidity demanders in Period 1:

λ ≡
Cov

[
S1 − S0, π(θd

1 − θ̄ )
]

Var
[
π(θd

1 − θ̄ )
] . (2.13)

Intuitively, whenλ is large, trades have large price impact and the market is
illiquid. Equation (2.6) implies that the price change between Periods 0 and 1
is

S1 − S0 = D̄ − ασ 2 (θ̄ + πz
)
− S0. (2.14)

Equations (2.4b) and (2.6) imply that the signed volume of liquidity demanders
is

π(θd
1 − θ̄ ) = −π(1 − π)z. (2.15)

Equations (2.13)–(2.15) imply that

λ =
ασ 2

1 − π
. (2.16)

Price impactλ is higher when agents are more risk averse (α large), the asset
is riskier (σ 2 large), or liquidity suppliers are less numerous (1− π small).

Since the signed volume of liquidity demanders is minus that of liquidity
suppliers,λ is also minus the regression coefficient of the price change between
Periods 0 and 1 on suppliers’ signed volume in Period 1:

λ = −
Cov

[
S1 − S0, (1 − π)(θs

1 − θ̄ )
]

Var
[
(1 − π)(θs

1 − θ̄ )
] . (2.17)

The supplier-based definition ofλ can be easier to implement empirically
than the equivalent demander-based definition. Indeed, an important class
of liquidity suppliers in some markets is designated market makers, and
information on their trades is often available.

The second measure of illiquidity is based on the autocovariance of price
changes. The liquidity demanders’ trades in Period 1 cause the price to deviate
from fundamental value, while the two coincide in Period 2. Therefore, price
changes exhibit negative autocovariance, and more so when trades have large
price impact. We use minus autocovariance

γ ≡ −Cov(S2 − S1, S1 − S0) (2.18)
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as a measure of illiquidity, and refer to it as price reversal. Equations (2.6),
(2.14), (2.18), andS2 = D imply that

γ = −Cov
[
D − D̄ + ασ 2 (θ̄ + πz

)
, D̄ − ασ 2 (θ̄ + πz

)
− S0

]

= α2σ 4σ 2
z π2. (2.19)

Price reversalγ is higher when agents are more risk averse, the asset is riskier,
liquidity demanders are more numerous (π large), and liquidity shocks are
larger (σ 2

z large).6

The measuresλ andγ have been defined in models focusing on specific
market imperfections, and have been widely used in empirical work ever since.
Using our model, we can examine the behavior of these measures across a
variety of imperfections, and provide a broader perspective on their properties.
We emphasize basic properties below, leaving a more detailed discussion of
the measures and their empirical estimation to Section5.

Kyle (1985) definesλ in a model where an informed insider trades with
uninformed market makers and noise traders. The price impact measured byλ
concerns the aggregate order that market makers receive, which is driven both
by the insider’s private information and by noise trading. Our definition ofλ
parallels Kyle’s since the trades of our liquidity demanders can be motivated
by hedging or information. In Kyle, however, market makers are risk neutral,
and trades affect prices only because they can contain information. Thus,λ
reflects purely the amount of information that trades convey, and is permanent
because the risk-neutral market makers set the price equal to their expectation
of fundamental value. In general, as in our model,λ has both a transitory
and a permanent component. The transitory component, present even in our
perfect-market benchmark, arises because liquidity suppliers are risk averse
and require a price movement away from fundamental value to absorb a
liquidity shock. The permanent component arises only when information is
asymmetric, for the same reasons as in Kyle.7

Roll (1984) links γ to the bid-ask spread, in a model where market orders
cause the price to bounce between the bid and the ask.Grossman and Miller
(1988) link γ to the price impact of liquidity shocks, in a model where risk-
averse liquidity suppliers must incur a cost to participate in the market. In both
models, price impact is purely transitory because information is symmetric. In
our model, price impact has both a transitory and a permanent component,

6 The comparative statics of autocorrelation are similar to those of autocovariance. We use autocovariance rather
than autocorrelation because normalizing by variance adds unnecessary complexity.

7 An alternative definition ofλ, which isolates the permanent component, involves the price change between
Periods 0 and 2 rather than between Periods 0 and 1. This is because the transitory deviation between price and
fundamental value in Period 1 disappears in Period 2.
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and γ isolates the effects of the transitory component. Note that besides
being a measure of imperfections,γ provides a useful characterization of
price dynamics: It measures the importance of the transitory component in
price arising from temporary liquidity shocks, relative to the random-walk
component arising from fundamentals.

Illiquidity in Period 1 lowers the price in Period 0 through the illiquidity
discount, which is the third term in (2.10). To explain why the discount
arises, consider the extreme case where trade in Period 1 is not allowed. In
Period 0, agents know that with probabilityπ they will receive an endowment
in Period 2. The endowment amounts to a risky position in Period 1, the size of
which is uncertain because it depends onz. Uncertainty about position size is
costly to risk-averse agents. Moreover, the effect is stronger when agents carry
a large position from Period 0 because the cost of holding a position in Period 1
is convex in the overall size of the position. (The cost is the quadratic term in
(2.2) and (2.3).) Therefore, uncertainty aboutz reduces agents’ willingness to
buy the asset in Period 0.

The intuition is similar when agents can trade in Period 1. Indeed, in the
extreme case where trade is not allowed, the shadow price faced by liquidity
demanders moves in response toz to the point where these agents are not
willing to trade. When trade is allowed, the price movement is smaller, but
nonzero. Therefore, uncertainty aboutz still reduces agents’ willingness to
buy the asset in Period 0. Moreover, the effect is weaker when trade is allowed
in Period 1 than when it is not (this follows from the more general result of
Proposition3.6), and therefore corresponds to a discount driven by illiquidity.
Because market imperfections hinder trade in Period 1, they tend to raise the
illiquidity discount in Period 0.

The illiquidity discount is the product of two terms. The first term,π M
1−π+π M ,

can be interpreted as the risk-neutral probability of being a liquidity demander:
π is the true probability, andM is the ratio of marginal utilities of wealth of
demanders and suppliers, where utilities are interim in Period 1/2. The second
term,11θ̄ , is the discount that an agent would require conditional on being a
demander.

The illiquidity discount is higher when liquidity shocks are larger (σ 2
z large)

and occur with higher probability (π large). It is also higher when agents are
more risk averse (α large), the asset is riskier (σ 2 large), and the asset is
in larger supply (̄θ large). In all cases, the risk-neutral probability of being
a liquidity demander is higher, and so is the discount that an agent would
require conditional on being a demander. For example, an increase in any
of (σ 2

z , π, α, σ 2) increases the discount required by a demander because the
liquidity shockz generates higher price volatility in Period 1 (as can be seen
from (2.6)). Furthermore, in the case of(σ 2

z , α, σ 2), the risk-neutral probability
of being a demander increases because so does the ratioM of marginal utilities
of wealth of demanders and suppliers: Suppliers, who benefit from the higher
price volatility in Period 1, become better off relative to demanders, who are
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Liquidity and Asset Returns

hurt by this volatility. In the case ofπ , bothM and the physical probability of
being a demander increase.8

Proposition2.3 gathers the comparative statics of the illiquidity measures
and the illiquidity discount with respect to the parameterσ 2

z , which measures
the magnitude of liquidity shocks. We derive comparative statics with respect
to the same parameter under the market imperfections that we consider, and in
Section5 we draw their empirical implications. The parameterσ 2

z has different
effects on the illiquidity measures and the illiquidity discount: It has no effect
on λ, while it raisesγ and the discount. The intuition is thatλ measures the
price impact per unit trade, whileγ and S0 concern the impact of the entire
liquidity shock.

Proposition 2.3. An increase in the varianceσ 2
z of liquidity shocks leaves

price impactλ unchanged, raises price reversalγ , and lowers the price in
Period 0.

3. Asymmetric Information

In this section, we assume that liquidity demanders observe the private signal
(1.3) before trading in Period 1. We examine how asymmetric information
affects the illiquidity measures and the illiquidity discount.

3.1 Equilibrium
The price in Period 1 incorporates the signal of liquidity demanders, and
therefore reveals information to liquidity suppliers. To solve for equilibrium,
we conjecture a price function (i.e., a relationship between the price and the
signal), then determine how agents use their knowledge of the price function
to learn about the signal and formulate demand functions, and finally confirm
that the conjectured price function clears the market.

We conjecture a price function that is affine in the signals and the liquidity
shockz, i.e.,

S1 = a + b(s − D̄ − cz) (3.1)

for three constants(a, b, c). For expositional convenience, we setξ ≡ s− D̄ −
cz. We also refer to the price function as simply the price.

Agents use the price and their private information to form a posterior
distribution about the asset payoffD. For a liquidity demander, the price
conveys no additional information relative to observing the signals. Given

8 The comparative statics of the illiquidity discount extend to its ratio relative to the discountασ2θ̄ driven by
payoff risk. Thus, while risk aversionα, payoff riskσ2, or asset supplȳθ raises the risk discount, they have an
even stronger impact on the illiquidity discount. For example, an increase inα raises the risk discount because
agents become more averse to payoff risk. The effect on the illiquidity discount is even stronger not only because
agents become more averse to the risk of receiving a liquidity shock, but also because the shock has larger price
impact and hence generates more risk.
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the joint normality of(D, ε), D remains normal conditional ons = D + ε,
with mean and variance

E[D|s] = D̄ + βs(s − D̄), (3.2a)

σ 2[D|s] = βsσ
2
ε , (3.2b)

whereβs ≡ σ 2/(σ 2 + σ 2
ε ). For a liquidity supplier, the only information is

the priceS1, which is equivalent to observingξ . Conditional onξ (or S1), D is
normal with mean and variance

E[D|S1] = D̄ + βξ ξ = D̄ +
βξ

b
(S1 − a), (3.3a)

σ 2[D|S1] = βξ (σ
2
ε + c2σ 2

z ), (3.3b)

whereβξ ≡ σ 2/σ 2
ξ andσ 2

ξ ≡ σ 2 +σ 2
ε +c2σ 2

z . Agents’ optimization problems
are as in Section2, with the conditional distributions ofD replacing the
unconditional one. Proposition3.1summarizes the solution to these problems.

Proposition 3.1. Agents’ demand functions for the risky asset in Period 1 are

θs
1 =

E[D|S1] − S1

ασ 2[D|S1]
, (3.4a)

θd
1 =

E[D|s] − S1

ασ 2[D|s]
− z. (3.4b)

Substituting (3.4a) and (3.4b) into the market-clearing equation (2.5), we
find

(1 − π)
E[D|S1] − S1

ασ 2[D|S1]
+ π

(
E[D|s] − S1

ασ 2[D|s]
− z

)
= θ̄ . (3.5)

The price (3.1) clears the market if (3.5) is satisfied for all values of(s, z).
SubstitutingS1, E[D|s], and E[D|S1] from (3.1), (3.2a), and (3.3a), we can
write (3.5) as an affine equation in(s, z). Therefore, (3.5) is satisfied for
all values of(s, z) if the coefficients of(s, z) and of the constant term are
equal to zero. This yields a system of three equations in(a, b, c), solved in
Proposition3.2.

Proposition 3.2. The price in Period 1 is given by (3.1), where

a = D̄ − α(1 − b)σ 2θ̄ , (3.6a)

b =
πβsσ

2[D|S1] + (1 − π)βξσ
2[D|s]

πσ 2[D|S1] + (1 − π)σ 2[D|s]
, (3.6b)

c = ασ 2
ε . (3.6c)
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To determine the price in Period 0, we follow the same steps as in Section2.
The calculations are more complicated because expected utilities in Period 1
are influenced by two random variables(s, z) rather than onlyz. The price
in Period 0, however, takes the same general form as in the perfect-market
benchmark.

Proposition 3.3. The price in Period 0 is given by (2.10), whereM is given
by (2.11),

10 =
(b − βξ )

2(σ 2 + σ 2
ε + c2σ 2

z )

σ 2[D|S1]π2
, (3.7a)

11 =
α3bσ 2(σ 2 + σ 2

ε )σ 2
z

1 + 10(1 − π)2 − α2σ 2σ 2
z
, (3.7b)

12 =
α3σ 4σ 2

z

[
1 + (βs−b)2(σ 2+σ2

ε )

σ2[D|s]

]

1 + 10(1 − π)2 − α2σ 2σ 2
z

. (3.7c)

3.2 Asymmetric information and illiquidity
We next examine how asymmetric information impacts the illiquidity measures
and the illiquidity discount. When some agents observe a private signal, this
not only generates dispersion in information across agents, but also renders
each agent more informed because the signal is partially revealed through the
price. The improvement in each agent’s information is not a distinguishing
feature of asymmetric information: Information can also improve if all agents
observe a public signal. To focus on the dispersion in information, which is
what distinguishes asymmetric information, we compare with two symmetric-
information benchmarks: the no-information case, where information is sym-
metric because no agent observes the signals, and the full-information case,
where all agents observes. The analysis in Section2 concerns the no-
information case, but can be extended to the full-information case (Online
Appendix, Proposition A.1). Price impactλ and price reversalγ under full
information are given by (2.16) and (2.19), respectively, whereσ 2 is replaced
by σ 2[D|s].

Proposition 3.4. Price impactλ under asymmetric information is

λ =
ασ 2[D|S1]

(1 − π)
(
1 − βξ

b

) . (3.8)

Price impact is highest under asymmetric information and lowest under full
information. Moreover, price impact under asymmetric information increases
when the private signal (1.3) becomes more precise—i.e., whenσ 2

ε decreases.
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Proposition3.4 shows that price impact is higher under asymmetric in-
formation than under either of the two symmetric-information benchmarks.
Asymmetric information thus raises price impact because information differs
across agents and not because of any changes in the average quality of
information.

The comparison between the asymmetric-, no-, and full-information cases
is driven by two effects: an uncertainty and a learning effect. Price impact
increases in the uncertainty faced by liquidity suppliers, measured by their
conditional variance of the asset payoff. Because of this uncertainty effect,
price impact tends to be lowest under full information, since liquidity suppliers
observe the signal perfectly, next lowest under asymmetric information, since
the signal is partially revealed to liquidity suppliers through the price, and
highest under no information.

An additional source of price impact, present only under asymmetric
information, is that liquidity suppliers seek to learn the signal from the price.
Because, for example, liquidity suppliers attribute selling pressure partly to
a low signal, they require a larger price drop to buy. This learning effect
corresponds to the termβξ/b in (3.8), which lowers the denominator and raises
price impactλ.

The learning effect works in the same direction as the uncertainty effect
when comparing asymmetric with full information, but in the opposite direc-
tion when comparing asymmetric with no information. Proposition3.4shows
that in the latter comparison the learning effect dominates. Therefore, price
impact is higher under asymmetric information than under either of the two
symmetric-information benchmarks.

Price reversal is not unambiguously highest under asymmetric information.
Indeed, consider two extreme cases. Ifπ ≈ 1, i.e., almost all agents are
liquidity demanders (informed), then the price processes under asymmetric and
full information approximately coincide, and so do the price reversals. Since,
in addition, liquidity suppliers face more uncertainty under no information than
under full information, price reversal is highest under no information.

If insteadπ ≈ 0, i.e., almost all agents are liquidity suppliers (uninformed),
then price impactλ converges to infinity (order 1/π ) under asymmetric infor-
mation. This is because the trading volume of liquidity demanders converges
to zero, but the volume’s informational content remains unchanged. Because of
the high price impact, price reversal is highest under asymmetric information.

Proposition 3.5. Price reversalγ under asymmetric information is

γ = b(b − βξ )(σ
2 + σ 2

ε + c2σ 2
z ). (3.9)

Price reversal is lowest under full information. It is highest under asymmetric
information ifπ ≈ 0, and under no information ifπ ≈ 1.
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The analysis of the illiquidity discount involves an effect that goes in the
direction opposite to the uncertainty effect. This is that information revealed
about the asset payoff in Period 1 reduces uncertainty and hence the scope
for risk sharing. Less risk sharing, in turn, renders agents less willing to buy
the asset in Period 0 and raises the illiquidity discount. The negative effect
of information on risk sharing and welfare has been shown inHirshleifer
(1971). We derive the implications of the Hirshleifer effect for asset pricing:
Proposition3.6shows that the reduced scope for risk sharing in Period 1 lowers
the asset price in Period 0 and raises the illiquidity discount.

Because of the Hirshleifer effect, the illiquidity discount under full infor-
mation is higher than under no information—a comparison that is exactly the
reverse than for the measures of illiquidity. A corollary of this result is that
the illiquidity discount under no trade is higher than in the perfect-market
benchmark of Section2. Indeed, the perfect-market benchmark corresponds
to the no-information case, while no trade is a special case of full information
when the signal (1.3) is perfectly precise (σ 2

ε = 0).9

The Hirshleifer effect implies that the illiquidity discount under asymmetric
information should be between that under no and under full information.
The discount under asymmetric information, however, is also influenced by
the learning effect, which raises price impact, reduces the scope for risk
sharing, and hence raises the discount. The learning effect works in the
same direction as the Hirshleifer effect when comparing asymmetric with
no information, but in the opposite direction when comparing asymmetric
with full information. Proposition3.6 shows that in the latter comparison the
learning effect dominates. Therefore, the illiquidity discount is higher under
asymmetric information than under either of the two symmetric-information
benchmarks. Asymmetric information thus raises the illiquidity discount
because information differs across agents and not because of any changes in
the average quality of information.

Proposition 3.6. The price in Period 0 is lowest under asymmetric informa-
tion and highest under no information.

The comparative statics with respect to the varianceσ 2
z of liquidity shocks

are the same as in the perfect-market benchmark case, except for the price
impactλ. Under asymmetric information, an increase inσ 2

z lowersλ because
liquidity shocks make prices less informative and attenuate learning.

9 Recall from Section2 that the illiquidity discount is the product of π M
1−π+π M , the risk-neutral probability of

being a liquidity demander, times11θ̄ , the discount that an agent would require conditional on being a demander.
No trade renders both demanders and suppliers worse off relative to the perfect-market benchmark, and hence
has an ambiguous effect on the ratioM of their marginal utilities of wealth. The increase in the illiquidity
discount is instead driven by the increase in the discount11θ̄ required by a demander.
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Proposition 3.7. An increase in the varianceσ 2
z of liquidity shocks lowers

price impactλ, raises price reversalγ , and lowers the price in Period 0.

4. Imperfect Competition

In this section, we assume that liquidity demanders can collude and exert mar-
ket power in Period 1. We consider both the case where liquidity demanders
have no private information on asset payoffs, and so information is symmetric,
and the case where they observe the private signal (1.3), and so information
is asymmetric. Since the second case nests the first by setting the varianceσ 2

ε

of the signal noise to infinity, we treat both cases simultaneously. We examine
how imperfect competition affects the illiquidity measures and the illiquidity
discount.

The trading mechanism in Period 1 is that liquidity suppliers submit a
demand function and liquidity demanders submit a market order—i.e., a price-
inelastic demand function. Restricting liquidity demanders to trade by market
order is without loss of generality: They do not need to condition their demand
on price because they know all information available in Period 1.

4.1 Equilibrium
We conjecture that the price in Period 1 has the same affine form (3.1) as in
the competitive case, with possibly different constants(a, b, c). Given (3.1),
the demand function of liquidity suppliers is (3.4a) as in the competitive case.
Substituting (3.4a) into the market-clearing equation (2.5) and using (3.3a)
yields the price in Period 1 as a function of the liquidity demanders’ market
orderθd

1 :

S1(θ
d
1 ) =

D̄ − βξ

b a + ασ2[D|S1]
1−π (πθd

1 − θ̄ )

1 − βξ

b

. (4.1)

Liquidity demanders chooseθd
1 to maximize the expected utility

−E exp
{
−α

[
W1 + θd

1

(
D − S1(θ

d
1 )
)

+ z(D − D̄)
]}

. (4.2)

The difference with the competitive case is that liquidity demanders behave as
a single monopolist and take into account the impact of their orderθd

1 on the
priceS1. Proposition4.1characterizes the solution to the liquidity demanders’
optimization problem.

Proposition 4.1. The liquidity demanders’ market order in Period 1 satisfies

θd
1 =

E[D|s] − S1(θ
d
1 ) − ασ 2[D|s]z + λ̂θ̄

ασ 2[D|s] + λ̂
, (4.3)

1356

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/25/5/1339/1567642 by Shanghai Jiao Tong U

niversity user on 31 D
ecem

ber 2019



Liquidity and Asset Returns

whereλ̂ ≡
dS1(θ

d
1 )

dθd
1

= απσ 2[D|S1]

(1−π)
(
1−

βξ
b

) .

Equation (4.3) determinesθd
1 implicitly because it includesθd

1 in both the
left- and the right-hand side. We writeθd

1 in the form (4.3) to facilitate the
comparison with the competitive case. Indeed, the competitive counterpart
of (4.3) is (3.4b), and can be derived by settingλ̂ to zero. The parameter̂λ
measures the price impact of liquidity demanders, and is closely related to
the price impactλ. Because in equilibrium̂λ > 0, the denominator of (4.3)
is larger than that of (3.4b), and thereforeθd

1 is less sensitive to changes in
E[D|s] − S1 andz than in the competitive case. Intuitively, because liquidity
demanders take price impact into account, they trade less aggressively in
response to their signal and their liquidity shock.

Substituting (3.4a) and (4.3) into the market-clearing equation (2.5), and
proceeding as in Section3, we find a system of three equations in(a, b, c).
Proposition4.2solves this system.

Proposition 4.2. The price in Period 1 is given by (3.1), where

b =
πβsσ

2[D|S1] + (1 − π)βξσ
2[D|s]

2πσ 2[D|S1] + (1 − π)σ 2[D|s]
, (4.4)

and(a, c) are given by (3.6a) and (3.6c), respectively. The linear equilibrium
exists ifσ 2

ε > σ̂ 2
ε , whereσ̂ 2

ε is the positive solution of

α2σ̂ 4
ε σ 2

z = σ 2 + σ̂ 2
ε . (4.5)

The price in the competitive market in Period 0 can be determined through
similar steps as in Sections2 and3.

Proposition 4.3. The price in Period 0 is given by (2.10), where

M = exp
(

1
2α12θ̄

2
)
√√
√
√

1 + 10π2

1 + 10

(
1 + 2λ̂

ασ 2[D|s]

)
(1 − π)2 − α2σ 2σ 2

z

, (4.6)

11 =
α3bσ 2(σ 2 + σ 2

ε )σ 2
z

1 + 10

(
1 + 2λ̂

ασ 2[D|s]

)
(1 − π)2 − α2σ 2σ 2

z

, (4.7a)

12 =

α3σ 4σ 2
z

[

1 +
α(βs−b)2(σ 2+σ2

ε )
(
ασ 2[D|s]+2λ̂

)

(
ασ 2[D|s]+λ̂

)2

]

1 + 10

(
1 + 2λ̂

ασ 2[D|s]

)
(1 − π)2 − α2σ 2σ 2

z

, (4.7b)

and10 is given by (3.7a).

1357

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/25/5/1339/1567642 by Shanghai Jiao Tong U

niversity user on 31 D
ecem

ber 2019



The Review of Financial Studies / v 25 n 5 2012

4.2 Imperfect competition and illiquidity
We next examine how imperfect competition by liquidity demanders impacts
the illiquidity measures and the illiquidity discount.

Proposition 4.4. Price impactλ is given by (3.8). It is the same as under per-
fect competition when information is symmetric, and higher when information
is asymmetric.

Although price impact is given by the same equation as under perfect
competition, it is higher when competition is imperfect because the coefficient
b is smaller. Intuitively, when liquidity demanders take into account their
effect on price, they trade less aggressively in response to their signal and
their liquidity shock. This reduces the size of both information- and liquidity-
generated trades. The relative size of the two types of trades remains the
same, and so does price informativeness, measured by the signal-to-noise ratio.
Monopoly trades thus have the same informational content as competitive
trades, but are smaller in size. As a result, the signal per trade size is higher, and
so is the price impactλ of trades. Imperfect competition has no effect on price
impact when information is symmetric because trades have no informational
content.

An increase in information asymmetry, through a reduction in the variance
σ 2

ε of the signal noise, generates an illiquidity spiral. Because illiquidity
increases, liquidity demanders scale back their trades. This raises the signal
per trade size, further increasing illiquidity. When information asymmetry
becomes severe, illiquidity becomes infinite and trade ceases, leading to a
market breakdown. This occurs whenσ 2

ε ≤ σ̂ 2
ε , i.e., for values ofσ 2

ε such
that the equilibrium of Proposition4.2 does not exist. Imperfect competition
is essential for the nonexistence of an equilibrium with trade because such an
equilibrium always exists under perfect competition.10

Proposition 4.5. Price reversalγ is given by (3.9), and is lower than under
perfect competition.

Although price reversal is given by the same equation as under perfect
competition, it is lower when competition is imperfect because the coefficient
b is smaller. Intuitively, price reversal arises because the liquidity demanders’
trades in Period 1 cause the price to deviate from fundamental value. Under
imperfect competition, these trades are smaller and so is price reversal. Note
that imperfect competition has opposite effects on the two illiquidity measures:
Price impactλ increases but price reversalγ decreases.

10 There exist settings, however, where asymmetric information leads to market breakdowns even with competitive
agents. SeeAkerlof (1970) for a setting where agents trade heterogeneous goods of different qualities, and
Glosten and Milgrom(1985) for an asset-market setting.
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While imperfect competition raises the price impactλ, it can lower the
illiquidity discount. Indeed, since liquidity demanders scale back their trades,
they render the price less responsive to their liquidity shock. Therefore, they
can obtain better insurance against the shock, and become less averse to
holding the asset in Period 0. This effect drives the illiquidity discount below
the competitive value when information is symmetric. When information is
asymmetric, the comparison can reverse. This is because the scaling back
of trades generates the spiral of increasing illiquidity, and this reduces the
insurance received by liquidity demanders.

Proposition 4.6. The price in Period 0 is higher than under perfect compe-
tition when information is symmetric, but can be lower when information is
asymmetric.

The comparative statics with respect to the varianceσ 2
z of liquidity shocks

are the same as under perfect competition.

Proposition 4.7. An increase in the varianceσ 2
z of liquidity shocks leaves

price impactλ unchanged under symmetric information but lowers it under
asymmetric information. It raises price reversal and lowers the price in
Period 0.

The case where liquidity suppliers collude can be treated in a manner similar
to the case where demanders collude, so we provide a brief sketch. Suppose
that demanders are competitive but suppliers behave as a single monopolist in
Period 1. Since suppliers do not know the liquidity shockz and signals, their
trading strategy is to submit a price-elastic demand function (rather than a
market order). Imperfect competition renders this demand function less price-
elastic than its competitive counterpart (3.4a). The lower elasticity manifests
itself through an additive positive term in the denominator of the competitive
demand (3.4a), exactly as is the case for liquidity demanders in (3.4b) and
(4.3).

Because liquidity suppliers submit a less price-elastic demand function
than in the competitive case, the trades of liquidity demanders have larger
price impact. Hence, price impactλ and price reversalγ are larger than in
the competitive case. The illiquidity discount is also larger because liquidity
demanders receive worse insurance against the liquidity shock. Thus, imper-
fect competition by suppliers has the same effect as by demanders onλ, the
opposite effect onγ , and the same or opposite effect on the illiquidity discount.

5. Empirical Implications

In this section, we explore implications of our model for empirical studies of
liquidity. These implications concern the relative merits of different empirical
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measures of illiquidity, as well as the empirical relationship between liquidity
and expected returns.

5.1 Measures of illiquidity
Within our model, we can compute two widely used empirical measures of
illiquidity and examine how they behave across a variety of imperfections.
The first measure isλ, defined as the regression coefficient of price changes
on the liquidity demanders’ signed volume, and based on the idea that trades
in illiquid markets should have large price impact. The second isγ , defined as
minus the autocovariance of price changes, and based on the idea that trades
in illiquid markets should generate large transitory deviations between price
and fundamental value. The measuresλ andγ have been linked to illiquidity
within models focusing on specific imperfections—λ in Kyle (1985), andγ
in Roll (1984) andGrossman and Miller(1988)—and have been widely used
in empirical work ever since. Measures closely related toλ are, for example,
the regression-based measure ofGlosten and Harris(1988) andSadka(2006),
and the ratio of average absolute returns to trading volume ofAmihud (2002).
Measures closely related toγ , are, for example, the bid-ask spread measure
of Roll (1984), the Gibbs estimate ofHasbrouck(2006), the price reversal
measure of Bao, Pan, and Wang (2011), and the price reversal conditional on
signed volume ofCampbell, Grossman, and Wang(1993).

In our analysis,λ captures not only the permanent component of price
impact, driven by the information that trades convey (as in Kyle), but also the
transitory component, driven by the risk aversion of liquidity suppliers. In this
sense,λ overlaps withγ , which isolates the transitory component.11 We further
show that under the two imperfections considered here,λ reflects market
imperfections more accurately thanγ . Indeed, both asymmetric information
and imperfect competition increaseλ (Propositions3.4 and 4.4) but can
decreaseγ (Propositions3.5and4.5).12

Estimatingγ requires information only on transaction prices. Estimating
λ requires also information on the signed trades of liquidity demanders or
suppliers. The signed trades of these agents can be partially identified using
data on transaction prices, quantities, and bid-ask quotes.Lee and Ready
(1991) propose an algorithm to determine who initiates a trade, and hence to
assign trades to liquidity demanders and suppliers. Their algorithm is based
on the assumption that trade initiators—liquidity demanders—use mostly

11 The overlap is larger betweenλ and the conditional price reversal of Campbell, Grossman, and Wang (1993)
because both measures condition on signed volume.

12 A previous version of this article (Vayanos and Wang 2010) shows additionally that participation costs,
transaction costs, and leverage constraints increase bothλ andγ , while search frictions can decrease bothλ
andγ , with λ decreasing under more stringent conditions thanγ .
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market orders, while those agreeing to take the other side of trades—liquidity
suppliers—use limit orders. A number of articles (e.g.,Sadka 2006) employ
Lee and Ready’s algorithm to estimateλ for the U.S. equity market, where
data on transaction prices, quantities, and bid-ask quotes are available.

The estimation ofλ can be further facilitated when data on the identity
of traders are available. For example,Madhavan and Smidt(1993) and
Comerton-Forde et al.(2010) use data on the quotes and inventories of
New York Stock Exchange (NYSE) specialists to examine their behavior in
supplying liquidity. The effective cost (price concession) that specialists extract
from other traders provides an estimate ofλ, at least for trades in which
specialists take part. The transaction data on corporate bonds also identify
dealer-customer and dealer-dealer trades (e.g.,Edwards, Harris, and Piwowar
2007), allowing estimation ofλ. 13

5.2 Liquidity and expected returns
Many empirical studies seek to establish a link between liquidity and expected
asset returns.14 Their basic premise is that illiquidity is positively related to
expected returns. Our analysis shows, however, that this relationship does not
have to be positive. Moreover, its nature depends crucially on the underlying
cause of illiquidity and on the measure of illiquidity being used. Suppose, for
example, that illiquidity is caused by asymmetric information. If illiquidity
is measured byλ, then its empirical relationship with expected returns will be
positive since asymmetric information raises bothλ and the illiquidity discount
(Propositions3.4 and 3.6). If, however, illiquidity is measured byγ , then
the relationship can be negative since asymmetric information can reduceγ
(Proposition3.5). Furthermore, if the imperfection is imperfect competition,
then a negative relationship can arise even if illiquidity is measured byλ. This
is because imperfect competition raisesλ but can lower the illiquidity discount
(Propositions4.4and4.6).

Our model predicts thatλ can reflect market imperfections and their impact
on asset prices more accurately thanγ ; does this hold in the data? Suggestive
evidence comes from recent studies in the corporate-bond market that compare
the performance ofλ andγ in explaining credit yield spreads.Dick-Nielsen,
Feldhutter, and Lando(DFL forthcoming) examine how spreads are linked
to λ, as approximated by the Amihud measure, toγ , and to more heuristic

13 Besides requiring more information thanγ for its estimation,λ has the drawback that it might not reflect a causal
effect of volume on prices. For example, if public news causes both volume and prices, thenλ can be positive
even in the absence of a causal effect of volume on price changes. The causality problem does not arise in our
model. Indeed, volume is generated by shocks observable only to liquidity demanders, such as the liquidity
shockz and the signals. Since these shocks can affect prices only through the liquidity demanders’ trades,λ
measures correctly the price impact of these trades.

14 See, for example, the survey byAmihud, Mendelson, and Pedersen(2005) for references.
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measures of illiquidity such as turnover and trading frequency.15 They find
that the positive relationship between spreads andλ is more robust than that
between spreads andγ , both across different rating categories and across the
pre- and post-2008-crisis sample periods (Table 3). Moreover, for the post-
crisis period, the relationship between spreads andγ becomes insignificant
except for AAA-rated bonds. For speculative-grade bonds, the relationship
becomes even negative (with at-statistic of –1.16). Given that speculative-
grade bonds are more likely to be subject to information asymmetry, this
finding, if further confirmed, would be consistent with the predictions of our
model.

Rayanakorn and Wang(2011) examine how spreads are linked toλ, γ ,
trading frequency, bond age and maturity, and the persistence and variance
of the stationary component in bond prices (presumably caused by transitory
liquidity shocks). They find thatλ can explain the cross-section of spreads
better thanγ , consistent with DFL.

One complication in measuring the relationship between illiquidity and
expected returns is that cross-sectional variation might be driven by factors
other than the imperfections themselves. Our analysis helps determine the
effects of such variation. Suppose, for example, that assets differ mainly in the
varianceσ 2

z of liquidity shocks. Under asymmetric information and imperfect
competition, largerσ 2

z lowersλ and raises expected returns (Propositions3.7
and 4.7). Thus, if cross-sectional variation is driven byσ 2

z and illiquidity
is measured byλ, then the empirical relationship between illiquidity and
expected returns will be negative. A positive relationship, however, will arise
if cross-sectional variation is driven by asymmetric information.

Finally, our analysis has implications for the positive relationship between
expected returns and idiosyncratic return volatility found in some empirical
studies (e.g.,Spiegel and Wang 2005; Ang et al. 2006). One source of
idiosyncratic volatility, especially over short horizons, is illiquidity because
it affects the stationary component of prices (see, e.g.,Bao, Pan, and Wang
2011). Therefore, the positive empirical relationship might be partly due to
illiquidity.

6. Welfare

Our model is suitable for a normative analysis of imperfections. In this section,
we illustrate the normative analysis in the case of asymmetric information. We
examine how asymmetric information affects the interim utilities(Us,Ud)
of liquidity suppliers and demanders in Period 1/2. As in Section3, we
compare with two symmetric-information benchmarks: no information and full
information.

15 Earlier studies linking credit yield spreads to a more limited set of illiquidity measures includeChen, Lesmond,
and Wei(2007) andBao, Pan, and Wang(2011).
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Since information reduces uncertainty and the scope for risk sharing,
the Hirshleifer effect implies that the interim utilities(Us,Ud) under full
information are smaller than under no information. The Hirshleifer effect
also implies that the interim utilities under asymmetric information should be
between those under no and under full information. The interim utilities under
asymmetric information, however, are also influenced by the learning effect,
which raises illiquidity and reduces the scope for risk sharing. The learning
effect works in the same direction as the Hirshleifer effect when comparing
asymmetric with no information, but in the opposite direction when comparing
asymmetric with full information. Proposition6.1 shows that in the latter
comparison the learning effect dominates. Therefore, the interim utilities are
higher under asymmetric information than under either of the two symmetric-
information benchmarks.

Proposition 6.1. The interim utilities(Us,Ud) of liquidity suppliers and
demanders in Period 1/2 are lowest under asymmetric information and highest
under no information.

Proposition6.1 carries through to the ex ante utility in Period 0. Since the
ex ante utility is the expectation of the interim utilities, it is lowest under
asymmetric information and highest under no information.

7. Conclusion

We examine how asymmetric information and imperfect competition affect
liquidity and expected returns. We show three main results. First, asymmet-
ric information raises expected returns, compared both with a symmetric-
information benchmark where all private signals are made public and with one
where private signals are not observed. Second, asymmetric information and
imperfect competition raise Kyle’s lambda but can bring the autocovariance
of asset returns closer to zero. Thus, lambda reflects both frictions more accu-
rately than autocovariance. Third, imperfect competition can lower expected
returns. Our results imply that the empirical relationship between illiquidity,
as measured by lambda, and expected returns is positive under asymmetric
information but can turn negative under imperfect competition. Moreover, the
relationship can turn negative even under asymmetric information, if illiquidity
is measured by autocovariance.

Our model can incorporate additional frictions. A previous version of this
article (Vayanos and Wang 2010) also considers participation costs, transaction
costs, leverage constraints, and search frictions. The results provide a unified
treatment of many different frictions under a common set of assumptions
concerning agents’ preferences and trading motives. Frictions are shown to
differ significantly as to their effects on illiquidity measures and expected
returns, and as to the empirical implications they generate.
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