
MANAGEMENT SCIENCE
Vol. 65, No. 5, May 2019, pp. 2015–2040

http://pubsonline.informs.org/journal/mnsc/ ISSN 0025-1909 (print), ISSN 1526-5501 (online)

Dynamic Portfolio Execution
Gerry Tsoukalas,a Jiang Wang,b Kay Gieseckec

a The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104; b MIT Sloan School of Management, Cambridge,
Massachusetts 02142 and China Academy of Financial Research and National Bureau of Economic Research; c Management Science and
Engineering, Stanford University, Stanford, California 94305
Contact: gtsouk@wharton.upenn.edu, http://orcid.org/0000-0003-2011-3646 (GT); wangj@mit.edu (JW); giesecke@stanford.edu (KG)

Received: July 29, 2012

Revised: February 20, 2013; March 15, 2014;

November 2, 2014; April 30, 2016;

November 3, 2016; April 29, 2017

Accepted: May 22, 2017

Published Online in Articles in Advance:
October 27, 2017

https://doi.org/10.1287/mnsc.2017.2865

Copyright: © 2017 INFORMS

Abstract. We analyze the optimal execution problem of a portfolio manager trading mul-
tiple assets. In addition to the liquidity and risk of each individual asset, we consider cross
asset interactions in these two dimensions, which substantially enriches the nature of the
problem. Focusing on the market microstructure, we develop a tractable order book model
to capture liquidity supply/demand dynamics in a multiasset setting, which allows us
to formulate and solve the optimal portfolio execution problem. We find that cross asset
risk and liquidity considerations are of critical importance in constructing the optimal
execution policy. We show that even when the goal is to trade a single asset, its optimal
execution may involve transitory trades in other assets. In general, optimally managing
the risk of the portfolio during the execution process affects the time synchronization of
trading in different assets. Moreover, links in the liquidity across assets lead to complex
patterns in the optimal execution policy. In particular, we highlight cases where aggregate
costs can be reduced by temporarily “overshooting” one’s target portfolio.
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1. Introduction
This paper formulates and solves the optimal execu-
tion problem of a portfolio manager trading multiple
assets with correlated risks and cross price impact. The
execution process, even for a single asset, exhibits sev-
eral main challenges: the at-the-money liquidity avail-
able is finite and the act of trading can influence cur-
rent and future prices. For instance, a large buy order
can push prices higher, making subsequent purchases
more expensive. Similarly, a sell order can push prices
lower, implying that subsequent sales generate less
revenue. The connection between trading and price is
known as price impact and its consequence on invest-
ment returns can be substantial.1 The desire to mini-
mize the overall price impact prompts the manager to
split larger orders into smaller ones and execute them
over time, in order to source more liquidity. However,
trading over longer periods leads to more price uncer-
tainty, increasing risk from the gap between remain-
ing and targeted position. These considerations jointly
influence the optimal execution strategy.

The execution of a portfolio generates two additional
challenges: First, how to balance liquidity considera-
tions with risks from multiple assets? In particular,
reducing costs may require trading assets with differ-
ent liquidity characteristics at different paces, whereas
reducing risk may require more synchronized trading

across assets. Second, how should cross asset liquidity
be managed? To the extent that liquidity can be con-
nected across assets, properly coordinating trades can
help improve execution.

Controlling price impact is a challenging problem
because it requires modeling how markets react to
one’s discrete actions. In practice, this requires a signif-
icant investment in information technology and human
capital, which can be prohibitive. Therefore, many
firms choose to outsource their execution needs or
use black-box algorithms from specialized third par-
ties, such as banks with sophisticated electronic trad-
ing desks. Moreover, this execution services industry
has been growing rapidly over the past decade. Not
surprisingly, there is a vast literature studying optimal
execution. Most of the existing work focuses on a spe-
cific type of execution objective, namely, the problem
of optimal liquidation for a single risky asset.

One strand of literature seeks to develop parsimon-
ious functional forms of price impact, grounded in em-
pirical observations, such as Bertsimas and Lo (1998)
and Almgren and Chriss (2000).2 The other focuses on
the market microstructure foundations of price impact.
Recent protechnology regulations have continued to
fuel the widespread adoption of electronic commu-
nication networks driven by limit order books. The
order books aggregate and publish available orders
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submitted by market participants, which represents
the instantaneous supply/demand of liquidity avail-
able in the market. Consequently, more recent papers
incorporate this aspect into the analysis. In partic-
ular, Obizhaeva and Wang (2013) propose a market
microstructure framework in which price impact can
be understood as the dynamic responses in the sup-
ply and demand of liquidity.3 One advantage of this
approach is that the optimal strategies obtained are
robust to different order book profiles. This litera-
ture highlights the fact that supply/demand dynamics
are crucial.

The key question we seek to address in this paper
is how managers can maximize their expected wealth
from execution, or more generally their expected util-
ity, when trading portfolios composed of dynamically
interacting assets. As much interest as the single-asset
case has generated, the multiasset problem has been
less studied, perhaps because “the portfolio setting
clearly is considerably more complex than the single-
stock case” (Bertsimas et al. 1999, p. 41). Our moti-
vation to pursue the multiasset problem is based on
the following observation: Even when the execution
object is about a single asset, in the general multias-
set setting, it is optimal to consider transitory trades in
other assets. There are at least two reasons. First, other
assets provide natural opportunities for risk reduction
through diversification/hedging. Second, price impact
across assets may provide additional benefits in reduc-
ing execution costs by trading in other assets. Thus, to
limit trading to the target asset is in general suboptimal.
Of course, when the execution involves a portfolio, we
would need to consider both effects from correlation in
risk and supply/demand evolution, respectively.4

To tackle the problem, we develop a multiasset order
book model with correlated risks and coupled supply/
demand dynamics. Here, an order executed in one
direction (buy or sell) will affect both the currently
available inventory of limit orders and also future in-
coming orders on either side. This is in line with the
empirical results in Biais et al. (1995) who find that
“downward (upward) shifts in both bid and ask quotes
occur after large sales (purchases).” Therefore, there
is a priori no reason to rule out the possibility that
double-sided (buy and sell) strategies may be optimal
even if the original objective is unidirectional (e.g., in
the standard liquidation problem). However, allowing
for arbitrary dynamics leads to modeling difficulties.
In particular, there is no reason to assume that the sup-
ply and demand sides of the order books are identi-
cal, implying that the manager’s buy and sell orders
need to be treated separately. To this end, we need to
introduce inequality constraints on the optimization
variables, which can render the optimization computa-
tionally challenging.

To solve the problem, we show that in our setting
the optimal policy is path independent, under some
restrictions on the asset price processes (namely, that
they are random walks). This allows us to solve a equiv-
alent static reformulation of the problem, which is cast
as a tractable quadratic program (QP) over the man-
ager’s inputs, without sacrificing optimality.

Our model implies that managers can utilize cross
asset interactions to significantly reduce risk-adjusted
execution costs. The resultant optimal policies involve
advanced strategies, such as conducting a series of buy
and sell trades in multiple assets. In other words, we
find that managers can benefit by overtrading during
the execution phase. This result may a priori seem
counterintuitive. Indeed, we demonstrate that one can
lower risk-adjusted trading costs by trading “more.”
We show that this is the case because a unique trade-
off arises in the multiasset setting. While consuming
greater liquidity generally leads to higher charges, one
can also take advantage of asset correlation and cross
impact to reduce risk via offsetting trades.

We show that multiasset strategies turn out to be
optimal for simple unidirectional execution objectives.
Even in the trivial case where the objective is to either
buy or sell units in a single asset, we find that the man-
ager can benefit by simultaneously trading back and
forth in other securities. Previous work has focused
on modeling the available buy-side or sell-side liq-
uidity independently of each other. Our results sug-
gest that these two cannot generally be decoupled
when accounting for cross asset interactions. Further-
more, the associated strategies are often nontrivial. For
instance, when liquidating (constructing) a portfolio,
one can reduce execution risk by simultaneously sell-
ing (purchasing) shares in positively correlated assets.
Our model explains why this type of trade provides an
effective hedge against subsequent price volatility.

Extending the analysis to portfolios with heteroge-
neous liquidity across assets (e.g., portfolios composed
of small- and large-cap stocks, ETFs and underlying
basket securities, and stocks and options), we find that
the presence of illiquid assets in the portfolio dras-
tically affects the optimal policies of liquid assets. In
particular, it can be optimal to temporarily overshoot
targeted positions in some of the most liquid assets in
order to improve execution efficiency at the portfolio
level. However, the different trading strategies associ-
ated with each asset type could leave managers overex-
posed to illiquidity at certain times during the execu-
tion phase. This synchronization risk can be addressed
by introducing constraints on the asset weights that
synchronize the portfolio trades, while maintaining
efficient execution. The constrained optimal policies
obtained combine aspects of the optimal stand alone
policies of both liquid and illiquid assets.
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Our analysis has implications for other important
problems in portfolio management. The DP and/or
QP formulations can be integrated into existing port-
folio optimization problems that treat transaction costs
as a central theme. For example, the portfolio selec-
tion problem with transaction costs is one of the most
central problems in portfolio management (see Brown
and Smith 2011 for recent advances). Our model pro-
vides an understanding of the origin of these costs and
of their propagation dynamics in the portfolio setting.
The insights we develop can thus allow portfolio man-
agers to better assess the applicability of some common
cost assumptions in this strand of literature (such as
assuming cost convexity and diagonal impact matrices,
and prohibiting counterdirectional trading).5

There is prior work on the multiasset liquidation
problem. Bertsimas et al. (1999) develop an approxi-
mation algorithm for a risk-neutral agent, which solves
the multiasset portfolio problem, while efficiently han-
dling inequality constraints. Almgren and Chriss (2000)
briefly discuss the portfolio problem with a mean-
variance objective in their appendix and obtain a solu-
tion for the simplified case without cross impact. Engle
and Ferstenberg (2007) solve a joint composition and
execution mean-variance problem with no cross impact
using the model from Almgren and Chriss (2000). They
find that cross asset trading can become optimal even
without cross impact effects. Brown et al. (2010) treat
a multiasset two-period liquidation problem with dis-
tress risk, focusing on the trade-offs between liquid
and illiquid assets. In contrast to these papers, we ana-
lyze the more general multiobjective execution problem
focusing on the market microstructure origins of price
impact. This allows us to characterize the optimal poli-
cies as a function of intuitive order book parameters,
such as inventory levels, replenishment rates and bid-
ask transaction costs. These parameters could be cali-
brated to tick by tick high-frequency data.6

The remainder of the paper is structured as follows:
Section 2 details the multiasset liquidity model. Sec-
tion 3 formulates and solves the manager’s dynamic
optimization problem. Section 4 focuses on numeri-
cal applications and economic insights. Section 5 treats
mixed liquidity portfolios. Section 6 concludes. The
appendix contains proofs and some additional results.

2. The Liquidity Model
In this section, we develop a model specifying how the
manager’s trades affect the supply/demand and price
processes of all assets. We start with the investment
space and admissible trading strategies in Section 2.1.
Each buy or sell order submitted to the exchange will
be executed against available inventory in the limit
order books. Section 2.2 explains the distribution of
orders in the order book. Section 2.3 describes the
replenishment process: Following each executed trade,

new limit orders arrive, reverting prices and collapsing
the bid-ask spread toward a defined steady state. This
liquidity mean-reversion property provides an incen-
tive for the manager to split his original order over
time. Doing so, he can take advantage of more favor-
able limit orders arriving at future periods. However,
delaying trading also introduces more price uncer-
tainty. We formulate and eventually solve this essential
trade-off between risk and liquidity.

2.1. Investment Space and Admissible Strategies
We adopt the following notation convention: vectors/
matrices are in bold and scalars in standard font. Time t
is discrete, with N equally spaced intervals. The man-
ager has a finite execution window, [0, 1], where the
length of the horizon is normalized to 1 without loss
of generality. Thus, there are N + 1, equally spaced,
discrete trading times, indexed by n 2 {0, . . . ,N}, with
period length ⌧ ⇤ 1/N .

Uncertainty is modeled by a probability space
(⌦,F,⇣). A filtration (Fn)n2{0,...,N} models the flow of
information. The stochastic process generating the
information flow is specified in Assumption 2.

We consider a portfolio of m assets indexed by i 2
{1, . . . ,m} ⇤ I. Regardless of the manager’s objective,
we assume that he has the option of purchasing or
selling/shorting units in any of the assets during any of
the discrete times, as long as he satisfies his boundary
conditions at the horizon N . Let x+

i , n � 0 and x�
i , n � 0

be his order sizes for buy and sell orders, respectively,
in asset i at time n. These will constitute the decision
variables over the trading horizon. We also define the
following corresponding buy and sell vectors:

buy at n: x+

n ⇤

2666664

x+

1, n
...

x+
m , n

3777775
, sell at n: x�

n ⇤

2666664

x�
1, n
...

x�
m , n

3777775
,

aggregate: xn ⇤


x+

n
x�

n

�
.

Next, we define part of the execution objective by for-
mulating the boundary conditions. Let zi , n be a state
variable representing the net amount of shares left to
be purchased (or sold, if negative) in asset i at time
n, before the incoming order at n. Following the vec-
tor conventions defined above, the manager’s total net
trades in each asset must sum to z0, that is,

NX
n⇤0

(x+

n � x�
n )⇤

NX
n⇤0
�0xn ⇤ z0 ,

where � ⇤ [I;�I] and I the identity matrix of size m.
Thus, �0xn ⇤ x+

n � x�
n . Following these definitions, it is

easy to show that the dynamics for the state vector zn
can be written as

zn ⇤ zn�1 ��0xn�1 and zN ⇤ �0xN . (1)
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The manager’s trades must be adapted to the informa-
tion filtration. The set S of admissible trading strategies
is specified in the definition below.
Definition 1 (Admissible Execution Strategies). The set S
of all admissible trading strategies for n 2 {0, . . . ,N}
takes the form

S ⇤

⇢
xn 2 ✓2m

+

����Fn-adapted;
NX

n⇤0
�0xn ⇤ z0

�
. (2)

The set of strategies in Definition 1 is broad in the
sense that no restrictions (e.g., shorting or budget con-
straints) are imposed during the trading window, as
long as the boundary constraints are satisfied by N .

Having established the preliminary notations, the
next step is to model the manager’s price impact. In
other words, we need to describe how his actions affect
asset prices over time. The next section is dedicated
to developing an adequate liquidity model, which will
allow us to formulate the manager’s dynamic opti-
mization problem.

2.2. Order Book
In a limit order book market (Parlour and Seppi 2008),
the supply/demand of each asset is described by the
order book. The basic building blocks of limit order
markets consist of three order types: Limit orders are
placed by market participants who commit their intent
to buy (bids) or sell (asks) a certain volume at a speci-
fied worst-case (or limit) price. They represent the cur-
rent visible and available inventory of orders in the
market. Market orders are immediate orders placed by
market participants who want to buy or sell a spe-
cific size at the current best prices available in the
market. They are executed against existing supply or
demand in the limit order book. Cancelation orders
remove unfilled orders from the book.
Figure 1. Partial Snapshot of (a) an Order Book: One-Month Oil Futures Contracts as of November 8, 2011, at 11:10 �.�.
(to Be Read as “Units Available” @ “Limit Price”), (b) an Equivalent Continuous Model Utilizing Density Functions, and
(c) the Shape of the Order Book Following Assumption 1
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To preserve tractability, we follow the existing litera-
ture in assuming that the manager is a liquidity taker,
that is, he submits market orders executed against
available inventory in the book on a single exchange.7
Although prices and quantities are discrete, we adopt
a continuous model of the order book which is entirely
described by its density functions: qa

i , n(p) for the ask
side and qb

i , n(p) for the bid side. The density functions
map available units (q) to limit order prices (p) and
thus describe the distribution of available inventory in
the order book overall price levels, at any given point
in time.

To illustrate, Figure 1 displays a partial snapshot of
(a) the oil futures limit order book as of November 8,
2011, at 11:10 �.�., and as a comparison, an equiva-
lent continuous-model (b) and a simplified continuous
model (c). The continuous model along with a simpli-
fying assumption on the order book density functions
(i.e., Assumption 1) keeps the problem tractable and
focused on the multiasset aspect of the model.

Following Obizhaeva and Wang (2013), we assume
that all assets in the portfolio have block-shaped order
books with infinite depth and time-invariant steady-
state densities.

Assumption 1 (Order Book Shapes). Letting qa
i , qb

i be
constants, and denoting by ai , n , bi , n the best available ask
and bid prices in each order book at n, right before the trade
arrives at n,8 we have

qa
i , n(p)⇤ qa

i 1{p�ai , n } and
qb

i , n(p)⇤ qb
i 1{pbi , n } , i 2 {1, . . . ,m}. (3)

Figure 1(c) provides an illustration of this assump-
tion.9

In addition to the shape of order book, we also need
to specify the location of ai , n and bi , n and their evolution
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over time. Two components are driving each asset’s best
bid and ask prices: its fundamental value and the price
impact of trading. We will focus on the first component
and return to the second later.

In absence of trading, the best bid and ask prices
should be determined by the assets’ fundamental val-
ues. We will assume these are given by a vector of
random walks un .

Assumption 2 (Random-Walk Fundamental Values). Let
✏n ⇠ N(0, ⌧⌃) be a vector of normal random variables with
covariance ⌧⌃, and 8 n 2 {1, . . . ,N}, ⇧[✏i , n✏i , n�1] ⇤ 0 and
⇧[✏i , n✏ j, n]⇤ ⌧�i j . We have

un ⇤ un�1 + ✏n , u0 > 0, (4)

with ⇧[ui , n | Fn�1]⇤ ui , n�1.10

The possibility of relaxing Assumption 2 is discussed
in Section 3.3. Thus, we can express the best bid and
ask prices, in the absence of the manager’s trades, as
follows:

ai , n ⇤ ui , n +
1
2 si , bi , n ⇤ ui , n � 1

2 si , 8 i , n. (5)

Here, si gives the bid-ask spread of asset i in steady-
state.

2.3. Order Book Dynamics
Next, we need to describe the evolution of ai , n and bi , n
when the manager trades in the market, which affects
the supply/demand dynamics of the order books. For
this purpose we extend the single-asset, one-sided,
order book model in Obizhaeva and Wang (2013) in
two directions. First, we develop a single-asset, two-
sided, order book model with coupled bid and ask
sides (i.e., a trade in one direction will affect both sides
of the order book) and bid-ask transaction costs. Sec-
ond, we extend to allow multiple assets. We start with
the two-asset case and show that interactions between
assets justify the need for a dynamic two-sided order
book model. We then provide the general multiasset
case (m assets).
2.3.1. Single Asset. We break down the price-impact
process into two phases: In phase 1, the manager
submits an order which is executed against available
inventory of orders, creating an immediate change in
the limit order book. The order book updates itself and
displaces the asset’s mid-price accordingly, creating
both a temporary price impact (TPI) and a permanent
price impact (PPI). In phase 2, new limit orders arrive
in the books, gradually absorbing the temporary price
impact and collapsing the bid-ask spread toward its
new steady state. We then describe how these dynam-
ics could be affected in a two-sided model.

Consider a market order arriving at time n to buy
x ⇤ x+

i , n > 0 units in an arbitrary asset i.11 Figure 2 shows

possible dynamics that i can face after getting hit by
the order.12 At time n � 1, we illustrate i in its steady
state (see Figure 2(a)). At the next period in time n (see
Figure 2(b)), the incoming order is executed against
available inventory on the ask side of i’s order book,
starting from the best available price and rolling up i’s
supply curve toward less-favorable prices. This instan-
taneously drives i’s best ask price from ai , n to a⇤

i , n ,
where the superscript denotes the moment immedi-
ately following an executed order. This results in a dis-
placement of a⇤

i , n(x)� ai , n . Given a density shape qa
i (p)

the amount of units executed over a small increment in
price is simply dx ⇤ qa

i (p)dp. An executed buy order of
size x therefore shifts the best ask price according toπ a⇤i , n (x)

ai , n

qa
i (p) dp ⇤ x. (6)

Combining the above expression with Assumption 1
we have the following Lemma.
Lemma 1 (Impact of Trading on the Order Book). An in-
coming market order to buy �sell� x+

in (x�
i , n) shares at time n

will instantaneously displace the ask �bid� price of asset i
according to

a⇤
i , n ⇤ ai , n +

x+

i , n

qa
i

and b⇤
i , n ⇤ bi , n �

x�
i , n

qb
i

. (7)

Clearly, the corresponding displacements in the best bid/ask
limit order prices are linear in the order size� a⇤

i , n � ai , n ⇤

x+

i , n/qa
i and b⇤

i , n � bi , n ⇤�x�
i , n/qb

i .
The immediate cost the manager incurs in this phase

can then simply be calculated by integrating the price
over the total amount of units executed:π x

0
a⇤

i , n(u) du.

Next, as shown in Figure 2(c), we assume that the
current and future supply/demand will adjust accord-
ingly. In particular, we assume that trading gives rise
to a permanent impact on prices, which is proportional
to the cumulative trade size.13 To capture the perma-
nent price impact, we introduce what we will call the
“steady-state” mid-price vi , n , (i ⇤ 1, . . . ,m), before the
trade arrives at n, which is given by

vi , n ⇤ vi , n�1 + �ii(x+

i , n�1 � x�
i , n�1)+ ✏i , n

⇤ ui , n + �ii

n�1X
k⇤0

(x+

i , k � x�
i , k), (8)

where the second term gives the permanent price
impact of trades up to and including the previous
period (n�1), and �ii is the permanent price impact for
each unit of trading in asset i itself. Hence, if the man-
ager doesn’t submit any trades after n, the best ask/bid
prices of asset i will eventually converge to vi , n+1 +

1
2 si

and vi , n+1� 1
2 si , respectively. For convenience, we intro-

duce the steady-state best ask/bid prices.



Tsoukalas, Wang, and Giesecke: Dynamic Portfolio Execution
2020 Management Science, 2019, vol. 65, no. 5, pp. 2015–2040, © 2017 INFORMS

Figure 2. (Color online) Evolution of Asset i’s Order Book, After Being Hit by a Single Buy Order of Size x+

in at Time n
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Assumption 3 (Steady-State Prices). Asset i’s best ask
and bid prices have steady-state levels, before the trade arrives
at n, which are given by

a1
i , n ⇤ vi , n +

1
2 si , b1

i , n ⇤ vi , n � 1
2 si , (9)

where the steady-state mid-price is given by Equation ���.

The best available ask and bid prices may generally
differ from their steady-state levels.

After the order is executed at n, the replenishment
process (phase 2) begins (see Figure 2(d) for an illus-
tration). During this phase, supply/demand is replen-
ished as new limit orders arrive to refill the order
books. Replenishment is spread over time, and the
order book may remain in transitory state over an
extended period of time. In the absence of any new
market orders after n, the new limit orders will grad-
ually push the best bid/ask prices toward their new
steady states a1

i , n+1 and b1
i , n+1. The rate at which this

happens depends on the dislocation size, the inher-
ent properties of the asset and the behavior of market
participants.

We follow Obizhaeva and Wang (2013) in describ-
ing the order book replenishment process. For conve-
nience, we define the order book displacement func-
tions to keep track of the difference between the best
ask and bid prices and their steady-state levels, that is,

da
i , n ⇤ ai , n � a1

i , n , db
i , n ⇤ b1

i , n � bi , n . (10)

The order book replenishment process is given as
follows.

Assumption 4 (Order Book Replenishment). The limit
order demand and supply are replenished exponentially, with
constant decay parameters ⇢a

i and ⇢b
i , for the ask and bid

prices, respectively. Specifically, over period ⌧, the order book
displacements are given by

da
i , n+1 ⇤ e�⇢

a
i ⌧

✓
da

i , n +

 x+

i , n

qa
i
� �ii(x+

i , n � x�
i , n)

� ◆
, (11a)

db
i , n+1 ⇤ e�⇢

b
i ⌧

✓
db

i , n +

 x�
i , n

qb
i

+ �ii(x+

i , n � x�
i , n)

� ◆
. (11b)

Clearly, as ⇢a
i and ⇢b

i !1, the asset is highly liquid
the displacements are null, and the order books are
replenished instantaneously after each trade. As ⇢a

i and
⇢b

i ! 0, the asset is highly illiquid no new limit orders
arrive, and the displacements are permanent (i.e., they
do not decay over time).14

From the order book replenishment process de-
scribed in Equation (11) and the steady-state bid/ask
prices in Equation (9), the dynamics of the best bid
and ask prices at any time are simply given by Equa-
tion (10).
2.3.2. Two Assets. Adding a second asset to the prob-
lem introduces several new features. We need to take
into account the correlation between the stochastic pro-
cesses driving the mid-prices but also the cross impact
that a trade in one asset can have on the supply/
demand curves of the other. These two features are dis-
tinct. Correlation is exogenous, whereas cross impact
is a direct result of the manager’s action. Although the
former is straightforward, we provide an example of
the latter in Figure 3.
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Figure 3. Dynamics of a Two-Asset Portfolio in Transient Regime (Nonsteady State) After Getting Hit by an Incoming Buy
Order in Asset 1: {x+

1, n > 0, x+

2, n ⇤ 0}
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(a1) (b1) (c1) (a2) (b2) (c2)
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2

Density: qb
2

Note. Executing the order leads to a PPI on asset 2 given by �21x+

1, n and to a subsequent response in its supply/demand curves.

Consider a portfolio comprised of two assets, and an
incoming order to buy x+

1, n shares in the first asset—the
second asset being “inactive.” Let �21 > 0 be the cross
impact parameter of asset 1 on asset 2. We illustrate
how the buy order affects the mid-price of the inactive
asset via the term �21x+

1, n , as shown in Figure 3(b2).
Given the resultant price change, the portfolio value
could be significantly affected. Furthermore, the cross
impact will have a secondary effect on the supply/
demand curves of the inactive asset. As is shown in
Figure 3(c2), the change in the second asset’s mid-price
defines a new steady state, initiating a response in the
bid/ask books. Specifically, new buy orders arrive to
replenish demand, while existing ask orders are can-
celed as prices converge toward the new steady states.
Thus, if any orders are later submitted in the inac-
tive asset, these would be executed at prices which
could diverge from the initial state. This effect is further
exacerbated as the number of assets in the portfolio
increases, since a trade in one could affect the prices of
all others. Section 4 provides a numerical study.

Analytically, for both assets, i ⇤ 1, 2, the steady-state
mid-prices and best bid/ask prices are still given by
Equations (8) and (9), with only the following modifi-
cation required on the steady-state mid-prices to incor-
porate the effect of cross asset price impact.
Assumption 5 (Cross Asset Price Impact). When there is
trading in both assets, the steady-state mid-price remains
linear in the trade size and is given by

vi , n ⇤ ui , n +
X
j⇤1, 2
�i j

nX
k⇤1

(x+

j, k�1 � x�
j, k�1), i ⇤ 1, 2. (12)

The order book replenishment dynamics for both
assets are still given by Equation (11) with only a slight

modification required to adjust the permanent price
impact term for both ask and bid sides:

dk
i , n+1⇤ e�⇢

k
i ⌧

✓
dk

i , n +

x±
i , n

qk
i

⌥
X
j⇤1, 2
�i j(x+

j, n �x�
j, n)

�◆
, k⇤ a , b.

2.3.3. Multiple Assets. Once the two-asset case is un-
derstood, the generalization to the m-asset case is
straightforward. For ease in exposition, we adopt sim-
ple vector notations. Let an and bn denote the vector
of ask and bid prices for the m assets in period n, n ⇤

0, 1, . . . ,T, un the vector of their fundamental values,
s the vector of steady-state bid-ask spread, zn the vec-
tor of positions in the m assets, da

n and db
n the vectors

of order book displacements from steady-state, and ⇤
the matrix of permanent price impact coefficients:

an⇤

2666664

a1,n
...

am ,n

3777775
, bn⇤

2666664

b1,n
...

bm ,n

3777775
, un⇤

2666664

u1,n
...

um ,n

3777775
, s0⇤

2666664

s1
...

sm

3777775
, (13a)

zn⇤

2666664

z1,n
...

zm ,n

3777775
, da

n⇤

2666664

da
1,n
...

da
m ,n

3777775
, db

n⇤

2666664

db
1,n
...

db
m ,n

3777775
, ⇤⇤

2666664

�11 · ·· �1m
...
. . .

...
�m1 · ·· �mm

3777775
.

(13b)

Furthermore, let Im be the identity matrix of order m
and

e�⇢k⌧
⇤

2666664

e�⇢k
1⌧ · ·· 0
...
. . .

...
0 · ·· e�⇢k

m⌧

3777775
, Qk

⇤

26666666664

1
2qk

1
· ·· 0

...
. . .

...

0 · ·· 1
2qk

m

37777777775
, k⇤a ,b

(14a)



Tsoukalas, Wang, and Giesecke: Dynamic Portfolio Execution
2022 Management Science, 2019, vol. 65, no. 5, pp. 2015–2040, © 2017 INFORMS

�a⇤[Im ;0], �b⇤[0;�Im], (14b)
a

⇤2Qa�0a�⇤�0, b
⇤2Qb�0b+⇤�

0. (14c)

Then, �0axn�1 ⇤ x+

n�1 and �0bxn�1 ⇤ x�
n�1. The assets’ best

ask and bid prices are given as follows.
Lemma 2 (Bid/Ask Price Processes). Following Assump-
tions �–� and Lemma �, the best bid/ask prices available in
the order books at time n, are given by

an ⇤ un +
1
2 s +⇤(z0 � zn)+da

n , (15a)
bn ⇤ un � 1

2 s +⇤(z0 � zn)�db
n . (15b)

where the state vector zn is defined in ��� and the vectors da
n

and db
n , which keep track of the replenishment process for the

ask and bid sides, are given by

da
n ⇤ e�⇢a⌧(da

n�1 + 
axn�1), (16a)

db
n ⇤ e�⇢b⌧(db

n�1 + 
bxn�1). (16b)

3. Optimal Execution Problem
3.1. Dynamic Program
Having detailed the liquidity model in Section 2, the
next step is to derive the manager’s execution costs,
as a function of his trading strategy. Using Lemma 2,
we can calculate the total costs and revenues resulting
from an order xn submitted at time n.
Lemma 3 (Costs and Revenues). An incoming order to
execute xn shares at time n will have associated total costs
�cn) and revenues �rn�, given by

cn ⇤ x+

n
0(an +Qax+

n ), rn ⇤ x�
n
0(bn �Qbx�

n ).
Let ⇡n be the manager’s reward function at n which

can be written as the difference between his total rev-
enues (from his selling orders) and his total costs (from
his purchasing orders). It follows that

⇡n ⇤ rn � cn ⇤ x�
n
0(bn �Qbx�

n )� x+

n
0(an +Qax+

n ). (17)

The manager’s total terminal wealth is thus

WN ⇤

NX
n⇤0
⇡n ,

which can recursively be written as

Wn ⇤ Wn�1 + ⇡n

⇤ Wn�1 + x�
n
0(bn �Qbx�

n )� x+

n
0(an +Qax+

n ). (18)

For convenience, it is helpful to restate the wealth func-
tion in a more compact form. This requires some addi-
tional notation. Let the (3m + 1)⇥ 1 vector yn represent
the aggregate state of the system at time n, excluding
the random walk:

yn ⇤

266664
1
zn
dn

377775
, with dn ⇤


da

n
db

n

�
.

Using this notation, the state dynamics from (1) and
the order books (16) can be aggregated as follows:

yn+1 ⇤Ayn +Bxn ,

A⇤

266664
Im+1 0 0

0 e�⇢a⌧ 0
0 0 e�⇢b⌧

377775
, B⇤

26666664

0
��0

e�⇢a⌧a

e�⇢b⌧b

37777775
,

(19)

where Im+1 is the identity matrix of size m + 1, and
e�⇢a , b⌧ and a , b are given in (14). Using this compact
notation and the bid and ask expressions in (15a) and
(15b), the wealth dynamics in (18) (after some algebra)
can be simplified to the following:

Wn+1 ⇤ Wn � (u0
n+1�

0
+ z0

0⇤�
0
+y0

n+1N)xn+1

� x0
n+1Qxn+1 , (20)

where Q and N are constant matrices that contain the
problem parameters:

Q⇤


Qa 0
0 Qb

�
, N⇤

266664

1
2 s0◆0

�⇤�0
I2m

377775
, with ◆⇤


Im
Im

�
.

Having defined the wealth function in (20) at each
time step, we can formulate the manager’s DP. To
capture the trade-off between liquidity and risk, we
will assume an exponential utility function with risk-
aversion coefficient ↵, over the manager’s total termi-
nal wealth. This choice is motivated by several fac-
tors: First, it allows us to focus exclusively on the
utility derived from execution, regardless of the man-
ager’s initial wealth—a well-known property of con-
stant absolute risk aversion (CARA) utility functions.
Second, in our framework, the exponential objective
is equivalent to a mean-variance objective—a common
modeling choice in the existing portfolio management
and price impact literature. Lastly, this form leads to a
tractable optimization problem which can be solved in
polynomial time (see Section 3.2). Then, letting Jn( · ) be
the value function at time n, the manager’s dynamic
program 8 n 2 {0, . . . ,N}, is given by

Jn⇤maximize
xn�0

⇧n[Jn+1] (21)

s.t. �0xN⇤zN (terminal trade),
JN+1⇤�e�↵WN , (terminal value function),

with state dynamics:
Wn+1⇤Wn�(u0

n+1�
0
+z0

0⇤�
0
+y0

n+1N)xn+1�x0
n+1Qxn+1 ,

yn+1⇤Ayn+Bxn ,

un+1⇤un+✏n+1.

Here, ⇧n denotes the conditional expectation given Fn .
The initial conditions are W0� (initial wealth), u0 ,y0
(specified by the user), in which without loss, we
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assume d0 ⇤ 0 (i.e., we assume the order books are
initially in their steady states). To ensure the dynamic
problem above is well defined we impose sufficient con-
cavity conditions on the terminal value function WN .

To this end, we first reformulate WN to express it sim-
ply as a function of the trades x0 , . . . , xN . We do this in
two steps: First, notice from the recursive equation (20),
the terminal wealth function can be written as

WN ⇤ W0� �u0�̄0x� z0
0⇤z0 �y0N̄x� x0Q̄x, (22)

where

x⇤

2666664

x0
...

xN

3777775
, u⇤

2666664

u0
...

uN

3777775
, y⇤

2666664

y0
...

yN

3777775
, �̄⇤

2666664

� · · · 0
...
. . .

...
0 · · · �

3777775
,

N̄⇤

2666664

N · · · 0
...
. . .

...
0 · · · N

3777775
, Q̄⇤

2666664

Q · · · 0
...
. . .

...
0 · · · Q

3777775
,

(23)

and the term z0
0⇤z0 is a constant which comes fromP

n z0
0⇤�

0xn with P
n �

0xn ⇤ z0. Second, notice that we
can use the linear state dynamics of yn (which tie it to
yn�1 , xn�1) to eliminate intermediate states by substitu-
tion, that is,

y⇤ Āy0 + B̄x, Ā⇤ [I A · · · AN]T ,

B̄⇤

2666666664

0 0 · · · 0 0
B 0 · · · 0 0

AB B · · · 0 0
...

...
. . .

...
...

AN�1B AN�2B · · · B 0

3777777775
.

(24)

Substituting this back into the wealth function, we
obtain a stochastic quadratic function of x:

WN ⇤W0� �u0�̄0x�z0
0⇤z0�(Āy0+B̄x)0N̄x�x0Q̄x

⇤W0� �u0�̄0x�z0
0⇤z0�(y0

0Ā
0N̄)x�x0(B̄0N̄+Q̄)x. (25)

Let D be the symmetric matrix characterizing the
quadratic form x0(B̄0N̄+ Q̄)x. We have

Ddef
⇤ 1

2

�(B̄0N̄+Q̄)+(B̄0N̄+Q̄)0�⇤ 1
2 (B̄0N̄+N̄0B̄)+Q̄. (26)

We then have the following result.
Lemma 4 (Concavity Condition). Suppose D, defined in
����, is positive semidefinite �positive definite�, then the ter-
minal wealth function WN is �strictly� jointly concave in
x0 , . . . , xN . It follows that the dynamic problem ���� is
�strictly� concave.

The proof is provided in Appendix A.3. Here and
below, all results are subject to the concavity condition
stated above.

In Appendix A.4, we show that the optimal policy
which solves the problem (21) is path independent,
that is, it does not depend on any un . This statement is
formalized in Proposition 1.

Proposition 1 (Deterministic Property of Optimal Policy).

The optimal trading policy x⇤
0 , . . . , x⇤

N which solves the prob-
lem ����, is path independent, that is, it does not depend on
the random walk u0 . . . ,uN .

The proof is provided in Appendix A.4 and relies on
three critical modeling features: the exponential util-
ity adopted, the random walk in Assumption 2, and a
“separability” property of the wealth function Wn , in
which the random walk appears as an additive term.
Proposition 1 does not describe how an optimal policy
can be obtained, yet it suffices to establish an equiv-
alence between dynamic and static problem formula-
tions given in Section 3.2. Nonetheless before proceed-
ing, we can provide more detail about the shape of the
optimal DP policy.

Proposition 2 (Shape of Optimal Policy and Value Func-

tion). The optimal trade at any time n, x⇤
n , is a continuous,

piecewise affine function of the deterministic state variables
of the problem, zn and dn contained in yn . The optimal policy
can be written as

x⇤
n(yn)⇤Knyn , n 2 {0, . . . ,N}, (27)

where Kn ⇤Kn(yn) is piecewise constant in yn . Furthermore,
the value function takes the form�

Jn(Wn�1 ,yn ,un)
⇤�exp

⇥
�↵(Wn�1�u0

nzn�z0
0⇤zn�y0

nM̂nyn)
⇤
,

n2{0, . . . ,N}, (28)

where M̂n ⇤ M̂n(yn) is piecewise constant in yn .

The proof is provided in Appendix A.4.

3.2. Equivalent Static Quadratic Program
Though Proposition 2 provides the structure of the
optimal policy, directly solving the DP can be compu-
tationally tedious because of the positivity constraints
on the controls, which lead to piecewise-defined value
functions. On the other hand, the path-independence
property of the optimal policy described in Proposi-
tion 1 allows us to reformulate the problem (21) into a
static one without loss of optimality. This type of refor-
mulation is often referred to as a “batch approach”
in the predictive control literature (e.g., Borrelli et al.
2017, section 8.2). The batch approach can be more
convenient when inequalities are present on the con-
trols as it effectively bypasses the need to compute the
value function (see discussion in Borrelli et al. 2017,
section 8.4). This reformulation leads to the following
result.

Proposition 3 (Quadratic Program). The dynamic portfo-
lio execution problem ���� is equivalent to the following
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static quadratic program which minimizes risk-adjusted exe-
cution shortfall�

minimize
x�0

1
2 x0D̄x+ (y0

0Ā
0N̄)x+ z0

0⇤z0

s.t. Ī�̄0x⇤ z0 (total shares executed) (29)

where Ī⇤ [Im , . . . , Im] is a collection of N +1 identity matri-
ces, each of size m, and D̄⇤ 2D+↵�̄⌃u�̄

0, with ⌃u being the
covariance matrix of u.

The proof is provided in Appendix A.5.
The sufficient condition in Lemma 4 requires that D̄

is positive (semi)definite, which is also the sufficient
convexity conditions for the QP.15 For all the numerical
examples in the paper, we verified positive definiteness
of D̄.

3.3. Discussion
We compare the static optimal policy described in
Proposition 1 to other types of policies found in the lit-
erature: Bertsimas et al. (1999) develop a static approxi-
mation algorithm, allowing the manager to reoptimize
his objective at every period, and show that their solu-
tion is close to optimal. Basak and Chabakauri (2010)
compare static precommitment strategies with “adap-
tive” strategies in the context of the portfolio composi-
tion problem and argue that the manager can be bet-
ter off by precommitting in certain cases. In contrast,
Lorenz and Almgren (2012) develop an adaptive execu-
tion model and show that the gain in trading flexibility
can indeed be valuable for the manager.

In our framework, a static solution is optimal with-
out exogenously enforcing precommitment—a result
that is sensitive to the random walk assumption, but
which significantly simplifies the problem. Intuitively,
this result states that the generated filtration provides
no useful information for the optimal policy in our
framework. This implies that the manager has noth-
ing to gain by utilizing path dependent trading strate-
gies in the CARA framework, under the random walk
assumption. Alfonsi et al. (2008) develop a compara-
ble static solution methodology in the context of an
optimal liquidation problem for a single asset and a
risk-neutral investor. Similarly, Huberman and Stanzl
(2005) find a comparable static solution in their frame-
work with a mean-variance objective.

Our formulation can be extended to include addi-
tional deterministic linear or quadratic constraints one
may want to impose on the set of feasible strate-
gies. This feature is of consequence to practitioners.
For instance, in many large-scale portfolio execution
programs, managers may want to exercise particular
control over certain assets. We provide an example
in Section 5.2. Further, the model can easily incorpo-
rate agency trading constraints which some execution
desks may face when trading on behalf of their clients.

For example, an execution desk liquidating an agency
position may not be allowed to trade counterdirec-
tionally and conduct any purchasing orders. This con-
straint could be captured in our model by setting x+⇤0.
A more detailed discussion on agency trading can be
found in Moallemi and Sağlam (2017).

Our formulation can also handle deterministic time-
dependent parameters (relaxing the Assumptions 1, 3,
and 4). Time dependence can be critical in many situa-
tions, for instance, when markets are in turmoil and liq-
uidity variations are expected to occur in the future (see
Brown et al. 2010 for a detailed treatment with uncer-
tain liquidity shocks). In our framework, expected liq-
uidity variations during the execution window could be
integrated into the model by adjusting the values of the
density q, the replenishment rate ⇢ and the steady-state
bid-ask spread s, at the desired periods. Similarly, one
could capture expected intraday fluctuations in volume
of trade (thus accounting for the well-known intraday
“smile” effect). Details are provided in Appendix A.1.

The liquidity model in Section 2 can capture vari-
ous forms of transaction costs observed in the market,
including fixed, proportional and quadratic costs. The
proportional (linear) trading costs are captured by the
constant bid-ask spread si . The quadratic trading costs
are captured by the linear price impact assumed in the
liquidity model. The fixed trading costs are not directly
modeled but reflected implicitly in our setting. In par-
ticular, we assume a finite number of trading periods
in part to reflect the fixed cost in trading. Presumably,
the number of trading periods N is connected to the
fixed cost. Although in our model N is taken as given,
we can easily endogenize it as an optimal choice in
the presence of fixed trading costs at say c0. Clearly,
larger N would decrease execution costs by allowing
the manager more flexibility in spreading trades. But
it would also increase total fixed costs, which would
be Nc0. An optimal choice of N will result from this
trade-off. See, for example, He and Mamaysky (2005)
for a more detailed discussion on this issue.

4. Optimal Execution Policy
This section presents several case studies which illus-
trate the solution to problem (29). We highlight cases
where advanced execution strategies are optimal. These
strategies constructively utilize order book cross elas-
ticities to improve execution efficiency. In what follows,
we set the steady-state bid-ask spread to zero to sim-
plify the exposition.16 Furthermore, we only consider
the problem of liquidating assets. The asset purchas-
ing problem is fully equivalent (by interchanging “buy”
and “sell” labels). The model can also treat mixed buy
and sell objectives without any modifications.
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4.1. Base Case (No Correlation in Asset
Fundamentals, No Cross Impact in Liquidity)

Our base case consists of a portfolio with two identical
assets, but with no correlation in their risks (� ⇤ 0) or
cross impact (�12 ⇤ �21 ⇤ 0) in their liquidity. The man-
ager needs to liquidate his position in the first asset, but
has no initial and final position, or predefined objective
in the second. We refer to the first asset as the active
asset (with boundary conditions z1, 0 , 0 and z1,N ⇤ 0),
whereas the second is inactive (with boundary condi-
tions z2, 0 ⇤ z2,N ⇤ 0). Consider a long position in the
active asset, consisting of z1, 0 ⇤ 100 shares that need to
be liquidated over N ⇤ 100 periods (i.e., z1, 100 ⇤ 0). The
horizon T ⇤ 1 day. The mid-price is v1, 0 ⇤ $1 at time 0,
implying a preliquidation market value of $100.17

Figure 4 displays the manager’s optimal execution
policy (OEP), in the form of his net position over time,
comparing the risk-neutral (RN) case to the risk-averse
(RA) case. Unsurprisingly, in the absence of correlation
and cross impact between the two assets, it is never
optimal to trade the inactive asset (dashed line). Doing
so, would increase overall execution costs without any
risk reduction. It is useful to provide some intuition on
the resultant OEP of the active asset (solid line).

In the RN case (Figure 4(a)), the OEP consists of plac-
ing two large orders at times 0 and N , and splitting
the rest of the order evenly across time. The slope of
the execution curve represents the manager’s trading
rate. The steeper the slope, the faster he is executing
shares. The slope is related to the order book replen-
ishment process. The faster the order book inventory
gets replenished after each executed order, the more
sell orders the manager can submit per unit time.
The liquidity spikes on the boundaries are related to
the replenishment and boundary conditions of the
order book. Assuming that the order books are initially
“full,” it is natural that the first order should be large. In
essence, one can obtain “cheaper” liquidity at the start.
Similarly, the last order also should be large because

Figure 4. Optimal Execution Policies in the Base Case
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Notes. Correlation (� ⇤ 0) and cross impact (�i j ⇤ 0) are turned off, implying that it is never optimal to trade in the inactive asset. Other
parameter values include �1 ⇤ �2 ⇤ 0.05, q1 ⇤ q2 ⇤ 1,500, ⇢1 ⇤ ⇢2 ⇤ 5, and �11 ⇤ �22 ⇤ 1/(3q1).

one cannot constructively utilize order book dynam-
ics after the execution horizon N . These spikes fade as
the inventory recovery rate increases and disappear at
the limit when liquidity is infinite and inventories are
instantaneously replenished after each executed order,
⇢!1 (we omit the plot).

In the RA case (Figure 4(b)), the manager consumes
greater liquidity early on in the liquidation process.
This dampens the adverse impact of future price uncer-
tainty, reducing execution risk, but at a cost. To under-
stand this result, it is helpful to consider extreme values
of ↵. When ↵!1, the manager is only sensitive to the
variance of his costs and the solution is trivial: execute
everything at time zero (we omit the plot). This strategy
is effectively risk free, as it guarantees zero standard
deviation in execution costs. But it also understandably
the worst-case scenario from a cost perspective.

The impact the OEP has on the expected ask and
bid prices of the active asset is shown in Figure 5.
The ask and bid prices are initially equal to $1 before
the first sell order is placed. The liquidation process
pushes the ask and bid prices of the active asset down
over time. As there is no correlation or cross impact
between assets, the price of the inactive asset remains
unaffected at $1 (we omit the plot). At any fixed time t,
the gap between the ask and bid prices defines the
instantaneous bid-ask spread, the dynamics of which
depend on two opposing forces: on the one hand, each
executed order widens the bid-ask spread (as the man-
ager is consuming liquidity in the order books). On the
other hand, new limit orders arrive over time collaps-
ing the bid-ask spread back toward its steady state. The
mid-point of the bid-ask spread is the instantaneous
mid-price (this is not shown on the plot).

The trade sizes and utility implications of the afore-
mentioned strategies are reported in cases 1 and 5, of
Table 1. The table shows traded volume (in shares), the
expected execution costs, the execution risk (stated in
terms of the standard deviation of the execution costs),
the manager’s execution certainty equivalent, and a
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Figure 5. Dynamics of the Expected Ask and Bid Prices of the Active Asset, Responding to the Manager’s Execution Policy
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Notes. Both prices are initially equal to $1 at time 0. Correlation (� ⇤ 0) and cross impact (�i j ⇤ 0) are turned off, implying that it is never
optimal to trade in the inactive asset. Prices are plotted beyond T ⇤ 1 to illustrate the convergence process toward a new steady state.

measure of execution efficiency which we refer to as
the execution Sharpe ratio. The latter is defined as the
ratio of the cost savings achieved over the most costly,
risk-free, execution strategy (↵! 1), divided by the
standard deviation of those costs. The higher the exe-
cution Sharpe ratio, the more efficient the execution.

4.2. E�ect of Correlation in Risk
Next, we build on the base case by introducing corre-
lation between the two assets, while maintaining cross
impact at zero (see Table 1, case 2).

Figure 6 compares the impact of correlation (� ⇤ 0.7)
between the RN and RA cases. Unsurprisingly, if the
manager is RN (↵ ⇤ 0, Figure 6(a)), there are no trades
in the inactive asset. On the other hand, risk aversion
(↵ ⇤ 0.5, Figure 6(b)), combined with correlation, leads
to a complex strategy in the inactive asset. In particular,
it becomes optimal to (1) go short the inactive asset at

Table 1. Shares Executed in Active and Inactive Assets, Expected Execution Costs, Standard Deviation of Costs, Certainty
Equivalent, and Execution Sharpe Ratio, Defined as the Cost Savings Achieved over the Most Inefficient Case 5, Divided by
the Standard Deviation of the Costs

Active asset Inactive asset

1st Total 1st Total Exp. costs Std. dev. Cert. eq. Exec. sharpe
Case trade volume trade volume ($) ($) ($) ratio (�)

1: No correl., no cross impact
Figure 4(a) 14.7 100 0 — 1.75 2.70 1.75 0.59
Figure 4(b) 47.6 100 0 — 2.17 1.20 2.54 0.97

2: Effect of correlation
Figure 6(a) 14.7 100 — — 1.75 2.70 1.75 0.59
Figure 6(b) 43.8 100 12.7 25.4 2.12 1.12 2.43 1.1

3: Effect of cross impact
Figure 8(a) 14.7 100 — — 1.75 2.70 1.75 0.59
Figure 8(b) 49.1 100 6.4 12.8 2.15 1.19 2.51 0.99
Figure 8(c) 14.1 100 9.6 33.3 1.45 2.73 1.45 0.69

4: Effect of correl. and cross impact
Figure 10 46.4 100 18.0 36.0 2.05 1.02 2.31 1.25

5: Execute everything at time 0
(not plotted) 100 100 — — 3.33 — 3.33 —

Notes. The higher the Sharpe ratio, the more efficient the execution is. Costs are provided in ($) terms. As a comparison, the portfolio
preliquidation market value is $100.

time zero, (2) hold the short position for some time, and
(3) start covering the short at variable rates toward the
end of the execution window, to satisfy the boundary
conditions. The resultant asset price dynamics for the
inactive asset are shown in Figure 7, whereas the num-
ber of shares traded with this strategy are reported in
case 2 of Table 1.

The results in Table 1 show that on the one hand, the
RA strategy trades off higher execution costs for risk
reduction, compared to the RN case. In other words, to
reduce execution risk, one generally has to be willing
to incur higher expected execution costs. On the other
hand, the RA strategy has a higher execution Sharpe
ratio compared to the RN strategy, implying more effi-
cient execution.

More importantly, a comparison between cases 1
and 2 in Table 1 suggests that shorting the positively
correlated inactive asset during the execution process
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Figure 6. OEPs with Correlation (� ⇤ 0.7)
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Notes. In (a) the lack of RA implies no trades in the inactive asset. Introducing RA in (b) triggers trades in the inactive asset. Cross impact
(�i j ⇤ 0) is turned off in both cases. Other parameter values include �1 ⇤ �2 ⇤ 0.05, q1 ⇤ q2 ⇤ 1,500, ⇢1 ⇤ ⇢2 ⇤ 5, and �11 ⇤ �22 ⇤ 1/(3q1).

(see Figure 6(b)) allows the manager to reduce both
his total execution costs (by $0.05) and execution risk
(by $0.08), compared to the single-asset strategy in
Figure 4(b). The risk reduction is because the short
position acts as a hedge, dampening future price
volatility. Note that despite the assumed positive corre-
lation, the trades at time 0 involve selling shares in both
assets simultaneously. This may seem counterintuitive
given that positive correlation is generally associated
with offsetting trades (buy and sell) in the classical
portfolio choice analysis. To understand why, consider
the following scenario: assume the price of the active
asset randomly decreases in the future, implying that
subsequent sell orders generate less revenue for the
manager. In this case, his short position in the posi-
tively correlated inactive asset will also accrue in value,
thus compensating him or her for the decreased rev-
enues. An analogous argument holds for the opposite
case of a random price increase.

Beyond a reduction in risk, we emphasize that ex-
pected costs are also reduced over the single-asset case,
despite that one is trading more shares and incurring
additional price impact in the inactive asset. To under-
stand why, consider the risk-reduction/cost-reduction

Figure 7. Dynamics of the Expected Ask and Bid Prices of Both Assets in the Case with RA (↵ ⇤ 0.5) and Correlation (� ⇤ 0.7),
as Depicted in Figure 6(b)
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Note. Cross impact (�i j ⇤ 0) is turned off.

trade-off mentioned previously. In the RA case, one can
decrease execution costs at the expense of higher risk,
and vice versa. Trading the inactive asset as a hedge
leads to more efficient risk reduction compared to the
unhedged strategy. In turn, this implies that one does
not have to give up as much “upside” in execution
costs, to achieve a desired risk level.

Figure 7(b) shows the evolution of the bid and ask
prices of the inactive asset, resulting from the OEP por-
trayed in Figure 6(b). The figure clearly demonstrates
why one cannot generally model bid and ask sides
independently of one another, when considering cross
asset effects. As one is required to sell and subse-
quently purchase back shares in the same asset, it is
necessary to keep track of the price impact that each
order has on both sides of the book, over time.

4.3. E�ect of Cross Impact in Liquidity
Here, we remain with the previous liquidation sce-
nario, removing correlation between the two assets
and focusing instead on the effect of cross impact. In
contrast to correlation which is assumed exogenous,
cross impact accounts for the impact an order in one
asset has on the price and order book supply/demand
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Figure 8. OEPs with Cross Impact
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cross impact triggers trades in the inactive asset, even in the RN case. Correlation (� ⇤ 0) is turned off. Other parameter values include
�1 ⇤ �2 ⇤ 0.05, q1 ⇤ q2 ⇤ 1,500, ⇢1 ⇤ ⇢2 ⇤ 5, and �11 ⇤ �22 ⇤ 1/(3q1).

dynamics of the other (see Figure 3 for an illustration).
Moreover, this impact does not need to be symmet-
ric between the two assets: an order in stock A may
affect stock B in one way, whereas changing the order
and trading in stock B first, ceteris paribus, may affect
stock A differently. Figure 8 illustrates this idea by com-
paring a case with symmetric cross impact (�12 ⇤ �21
in Figure 8(b)) to a case with asymmetric cross impact
(�12 ⇤��21 in Figure 8(c)).

4.3.1. E�ect of Cross Impact on the Liquidation Strat-
egy. Symmetric cross impact without RA (Figure 8(a))
does not result in any trades in the inactive asset and
the costs over the base case remain unchanged. Adding
RA (Figure 8(b)) triggers trades in the inactive asset,
comparable to the ones observed in the case with cor-
relation. Therefore, if RA is considered, symmetric
cross impact and correlation can have similar implica-
tions for the manager’s OEP. The resultant trades are
reported in case 3 of Table 1, whereas the resultant
price dynamics are reported in Figure 9.

Figure 8(c) presents a case that clearly differentiates
correlation from cross impact. We consider asymmetric

Figure 9. Dynamics of the Expected Ask and Bid Prices of Both Assets in the Case with RA (↵ ⇤ 0.5) and Cross Impact, as
Depicted in Figure 8(b)
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Notes. Correlation is turned off. The manager’s trades in the active asset affect the bid and ask side prices of the inactive asset, and vice versa.

cross impact between two assets and show that even a
RN manager could be better off by trading in both the
active and the inactive asset. This is in stark contrast
to the previous example of correlations which become
irrelevant for a RN manager.
4.3.2. E�ect of Cross Impact on Execution Utility. The
results in case 3 of Table 1 suggest that the effect of
symmetric cross impact on execution costs and risk
reduction is comparable to that of correlation. Trading
the inactive asset during the liquidation (Figure 8(b))
allows the manager to slightly reduce his total execu-
tion costs (by $0.02) and his execution risk (by $0.01)
over the optimal single-asset trading strategy (Fig-
ure 4(b)). In contrast, asymmetric cross impact allows
the manager to achieve the greatest cost reduction of
all cases (although, this comes with increased execu-
tion risk).

The introduction of symmetric cross impact has im-
plications for the price dynamics of the inactive asset
that are not observed when only considering correla-
tion. Figure 9(b) shows the cross impact the active asset
has on the inactive one (�21). The liquidation of the
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active asset pushes the price of the inactive asset down
over time. This effect may seem favorable to the man-
ager. He could short the inactive asset at time 0 and
buy it back later at a lower price. However, putting in
place the initial short position in the inactive asset also
adversely affects the price of the active asset via the
cross impact term (�12). This implies that the manager
would be liquidating his active position at lower prices.
This effectively restricts the manager’s ability to take
advantage of the favorable price dynamics expected in
the inactive asset. This trade-off is fully internalized in
the OEP.

4.3.3. Asymmetric Cross Impact and Arbitrage. Huber-
man and Stanzl (2004, section 5) illustrate an example of
asymmetric cross impact that can lead to price manip-
ulation and arbitrage. The authors derive sufficient no-
arbitrage conditions in the multiasset setting: (1) cross
impact symmetry between assets and (2) lack of tem-
porary impact costs. As the authors state, these condi-
tions are sufficient, but they are not necessary. Case 3
of Table 1 shows that asymmetric cross impact does
not necessarily lead to arbitrage opportunities when
considering positive temporary impact costs. Although
some cost benefits can be achieved under these scenar-
ios over the RN base case, net execution costs remain
positive at $1.45. To understand this result, observe
that every executed order has both a permanent and
temporary impact component, and although asymmet-
ric cross impact can understandably reduce costs on
the permanent component, the manager is also consis-
tently incurring costs from the temporary component
during trade (i.e., he is “rolling” up or down the sup-
ply/demand curves getting executed at increasingly
costly limit price levels). This trade-off between tempo-
rary and permanent price impacts is fully internalized
in the OEP. Thus, similar to Proposition 3 in Huberman
and Stanzl (2004), absence of arbitrage will hold if tem-
porary impact costs are sufficiently larger than perma-
nent impact costs. Formally, positive definiteness of D̄
implies no arbitrage.

Figure 11. Dynamics of the Expected Ask and Bid Prices of Both Assets in the Scenario Depicted in Figure 10
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Figure 10. OEP with RA (↵ ⇤ 0.5), Cross Impact
(�12 ⇤ �21 ⇤ 0.8�11), and Correlation (� ⇤ 0.7)
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Note. Other parameter values include �1 ⇤ �2 ⇤ 0.05, q1 ⇤ q2 ⇤ 1,500,
⇢1 ⇤ ⇢2 ⇤ 5, and �11 ⇤ �22 ⇤ 1/(3q1).

4.4. Joint E�ect of Correlation in Risk and Cross
Impact in Liquidity

Here, we consider both correlation and cross impact
simultaneously. The results reported in Figure 10 and
in case 4 of Table 1, suggest that the cost benefits ob-
tained exhibit positive convexity. In other words, corre-
lation and cros -impact work constructively, providing
benefits that are greater than the sum of the individual
contributions each of them brings independently.

The results in case 4 of Table 1 suggest that expected
costs can be reduced to $2.05, whereas risk can be
reduced to $1.02, the lowest of all cases. The execu-
tion Sharpe ratio obtained is the greatest of all cases,
at 1.25. To achieve these benefits, the OEP requires
trading a significant volume in the inactive asset, equal
to approximately 1/3 of the total volume of the active
asset. The price dynamics of the inactive asset observed
in Figure 11 combine the cross impact and correlation
effects we described previously. In this case, the man-
ager is generally selling “high” and buying “low” in
the inactive asset, while also benefiting from a reduced
initial order size in the active asset, and limit order
mean-reversion dynamics.
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Figure 12. OEPs in the Case of a Portfolio with Mixed Liquidity

(a) ! = 0 (b) ! = 0.5, É = 0

Overshooting

(c) ! = 0.5, É = 0.5

–20

0

20

40

60

80

100

Po
si

tio
n

–20

0

20

40

60

80

100

Po
si

tio
n

–20

0

20

40

60

80

100

Po
si

tio
n

0 0.25 0.50 0.75 1.00

Time

0 0.25 0.50 0.75 1.00

Time

0 0.25 0.50 0.75 1.00

Time

Liquid asset
Illiquid asset

Note. Parameter values include v1, 0 ⇤ v2, 0 ⇤1, �1 ⇤ �2 ⇤ 0.05, �11 ⇤ �22 ⇤ 1/(3q1), and �12 ⇤ �21 ⇤ 0.

5. Mixed Liquidity Portfolios
This section illustrates additional results that are of
consequence to practitioners.

5.1. Portfolio Overshooting
Execution objectives are typically richer than the ones
illustrated in the previous section. Portfolio managers
often need to liquidate or acquire positions in multi-
ple assets with different risk and liquidity characteris-
tics. This section illustrates the optimal liquidation of a
portfolio comprising two assets with different liquidity
levels. The first asset is considered liquid, with limit
order replenishment rate ⇢1 ⇤ 10 and limit order den-
sity q1 ⇤ 3,000, whereas the second is (comparatively)
illiquid, with rate ⇢2 ⇤ 1 and density q2 ⇤ 300.18

Figure 12 shows the OEPs obtained for different RA
and correlation assumptions. The results suggest that
liquid assets generally will be more smoothly executed
throughout the horizon, whereas illiquid assets tend
to corner solutions (i.e., it is optimal to execute two
larger trades at times 0 and 1). The intuition here is sim-
ple: illiquid assets have order books with low replen-
ishment rates leading to asset prices with low mean-
reversion. The lack of replenishment implies that one
cannot take advantage of order book dynamics in any
meaningful way and thus, the optimal solutions tend
to be trivial. On the other hand, liquid assets with high
replenishment have more interesting dynamics that

Figure 13. Asset Weights (Expressed as a % of Total Shares Held) of the Mixed Liquidity Portfolios Depicted in Figure 12
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can be utilized toward the execution problem, leading
to richer optimal strategies.

When the two assets are correlated (see Figure 12(c)),
further advanced strategies become optimal. We obtain
two-sided buy and sell strategies, despite the simple
unidirectional liquidation objective. The position in the
liquid asset becomes negative near time 0.25, imply-
ing overshooting. The excess shares sold are gradually
purchased back in order to meet the boundary con-
ditions as the horizon approaches. From a hedging
perspective, the transient short position in the liquid
asset dampens future price uncertainty and reduces
execution risk. We emphasize that although overshoot-
ing was also observed in the example of Section 4.2
(because any trades in the inactive asset could be con-
sidered as overshooting trades), here, this effect is
entirely driven by the assumed liquidity differences
between the two assets.

5.2. Synchronization Risk
The results in the previous section suggest that liquid
and illiquid assets will be executed at different speeds.
The manager could therefore be left over/under-
exposed to individual assets during the execution pro-
cess, that is, he could be facing synchronization risk. To
highlight this more clearly, we plot the weight of each
asset (expressed as the ratio of net shares held in each
asset over total shares held in the portfolio) over time,
in Figure 13, for the same cases presented in Figure 12.
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Figure 14. OEPs in Mixed Liquidity Portfolios With (Subfigures (b) and (c)) and Without (Subfigure (a)) Synchronization
Constraints
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Figure 15. Asset Weights Over Time for the Scenarios Depicted in Figure 14
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Assume that the manager’s initial optimal portfolio
allocation is 50/50, and that there is some underlying
benefit (such as portfolio diversification) to preserve
this optimal split during the execution window. All
three cases in Figure 13 show that the manager could
be left overexposed to the illiquid asset during the exe-
cution window, as its weight can move above the opti-
mal 0.5 line.

A simple way to mitigate the undesirable expo-
sure is to constrain the admissible order quantities at
each trading period. For instance, one can restrict each
asset’s weight to an interval, wi , n 2 [w⇤

i � ⇠,w⇤
i + ⇠],

where w⇤
i is the desired weight targeted in asset i and

⇠ 2 [0,1) controls the desired margin of error. The
parameter ⇠ is chosen by the manager and can be
thought of as the degree of tolerance to weight vari-
ability. Figures 14 and 15 show the impact of different
tolerance parameters on the OEPs and weight profiles.
As ⇠! 0, both asset weights converge to the 0.5 line,
and the OEPs converge to a single strategy. Interest-
ingly, the unique optimal strategy is a weighted com-
bination of the two individual unconstrained OEPs of
each asset. Further, it is in the strict interior of the two.

Adding these types of constraints to the problem
reduces the set of feasible execution strategies, lead-
ing to increased execution costs over the unconstrained
global optimum. This raises the question of how costly
it is to synchronize the portfolio in this fashion. We
define the synchronization cost as the expense one

would have to incur over the most efficient (lowest cost)
outcome, in order to maintain a targeted weight profile
during the execution process.

In our examples, the synchronization cost for ⇠ ⇤

10% is equal to 18 bps, whereas in the worst-case sce-
nario (⇠! 0), it is equal to 38 bps. The latter represents
the maximum amount the manager would expect to
pay, in excess of the most efficient outcome, in order to
remain fully in line with the optimal targeted weight
allocation throughout the entire execution window.

6. Conclusion
Controlling price impact is of central importance in
portfolio management, and is particularly crucial in
practical situations where managers need to execute
large positions in multiple assets. We have studied the
multiasset execution problem demonstrating that it is
far from being a simple extension to the single-asset
case. Assets can interact in complex ways, and these
interactions can substantially affect the aggregate port-
folio execution cost and risk. Understanding the exact
nature of these interactions requires an extensive mar-
ket microstructure model that can adequately capture
coupled supply and demand dynamics at the order
book level.

Our results suggest that managing execution at the
portfolio level needs to take account of links in both
risk and liquidity across assets. In the presence of such
links, we find that managers can improve execution
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efficiency by engaging in a series of nontrivial buy
and sell trades in multiple assets simultaneously. The
trades are nontrivial in the sense that they may require
temporarily trading positively correlated assets in the
same direction, or even overshooting one’s portfolio
target during the execution window.

These results extend to portfolios with heteroge-
neous liquidity across assets. There, the liquidity dif-
ferential between assets can lead to complex strategies
which utilize the liquid asset to improve execution effi-
ciency at the portfolio level. However, we also find that
these advanced strategies can leave managers overex-
posed to illiquid assets during the execution. This syn-
chronization risk can be mitigated by introducing con-
straints that can synchronize the portfolio trades, at the
cost of reduced execution efficiency. This led to the con-
cept of synchronization cost—a measure which allows
managers to trade off these two factors, based on their
individual preferences.

Perhaps an even more compelling takeaway is that
advanced strategies can be optimal for simple and com-
mon execution objectives (such as the liquidation of
a single asset in the portfolio). This implies that it
may be crucial for managers to systematically take into
account cross asset interactions in risk and liquidity in
their risk-management and trading decisions. It also
implies that market regulators should be aware of the
increased liquidity needs this can lead to, if deployed
on a large-scale basis.
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Appendix
The appendix is structured as follows: Section A.1 contains
some additional results; Section A.2 contains proofs for some
preliminary results; Section A.3 contains the proof of the con-
cavity result; Section A.4 contains proofs for the dynamic
programming solution; Section A.5 contains proofs for the
equivalent static QP.

A.1. Additional Results
A.1.1. E�ect of the Equilibrium Bid-Ask

Spread/Proportional Transaction Costs
Figure A.1 highlights the sensitivity of the inactive asset OEP,
to its steady-state bid-ask spread, in the example from Sec-
tion 4.2. The OEP is plotted with values s2 ⇤ 0, 50, 100 and

Figure A.1. Effect of the Steady-State Bid-Ask Spread on the
Inactive Asset OEP from Figure 6(b)
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Table A.1. Expected Costs and Volume Traded for Different
Values of s

Bid-ask spread s (bps) 0 50 100 200

Expected costs ($) 2.12 2.41 2.68 3.17
Total volume in inactive 25.4 17.0 9.2 —

asset (shares)

200 bps. The reference point is the inactive asset’s initial mid-
price, v2, 0 ⇤ $1, so that 100 bps corresponds to a bid-ask
spread of 1¢. At a spread of 200 bps, any trading activity in
the inactive asset is halted completely. The associated costs
and total volume traded in the inactive asset are provided in
Table A.1.

A.1.2. Intraday Liquidity Variations and Time-Dependent
Parameters

Figure A.2 shows the sensitivity of a single-asset OEP for a
RN manager (↵ ⇤ 0) with a time-varying view on the order
book densities. The fact that liquidity can predictably change
at different time scales has been empirically documented
(see, e.g., Chordia et al. 2001). We plot the OEP for respec-
tive changes in the value of q, both lower (Figure A.2(a)), and
higher (Figure A.2(b)), in the interval [N/2,N].

There is a significant change of trading velocity both
immediately preceding and following the change in liquid-
ity. Furthermore, temporary “dead-zones” emerge around
the time of the change in liquidity, where it becomes opti-
mal to halt all trading activity. Intuitively, these indicate that
the manager should wait until the liquidity changes are fully
absorbed by the order books and supply/demand converges
to the new regime before finishing off the remaining orders.

A.2. Proof of Lemmas 1, 2, and 3
Proof of Lemma 1 (Temporary Price Impact). A buy order of
size x being executed against i’s ask-side inventory qa

i , dis-
places the best ask price from ai , n ! a⇤

i , n , according to
Ä a⇤i , n (x)

ai , n qa
i (p) dp ⇤ x. Combining this expression with Assump-

tion 1, we haveπ a⇤i , n (x)

ai , n

qa
i 1p�ai , n

dp ⇤ qa
i (a⇤

i , n(x)� ai , n)⇤ x

) a⇤
i , n(x)⇤ ai , n +

x
qa

i
.
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Figure A.2. RN OEP with an Order Book Density Decrease in (a) and a Density Increase in (b)

(a) qn/2, . . . , qN = 0.85q0 (b) qn/2, . . . , qN = 1.15q0
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Therefore for x ⇤ x+

i , n , we have a⇤
i , n ⇤ ai , n + x+

i , n/qa
i and the

temporary price impact displacement is defined as a⇤
i , n �

ai , n ⇤ x+

i , n/qa
i . The derivation for a sell order follows similar

steps. ⇤

Proof of Lemma 2 (Best Prevailing Bid/Ask Prices). We present
below an outline of the derivation for the best ask price
dynamics the bid price dynamics are derived in a similar way.
The best available ask price for asset i at time n is given by

ai , n ⇤ ui , n +
1
2 si +PPI+TPI,

where the first term accounts for the random walk driving
the mid-price, the second term accounts for the steady-state
bid-ask spread, the third term accounts for the aggregate PPI
of all orders up to (but excluding) n, and the fourth term is
the order book state vector which accounts for the TPI of all
orders up to (and including) n. Following Equation (12) and
the definition of the vector zn in Section 2.1, the aggregate
PPI for asset i can be written as

nX
k⇤1

X
j2I
�i j(x+

j, k�1 � x�
j, k�1)⇤ [⇤(z0 � zn)]i ,

where [ · ]i returns the ith line of a matrix. Following Assump-
tion 4, the aggregate TPI can recursively be written as da

i , n ⇤

(da
i , n�1 + 

a
i (x±

i , n�1))e�⇢
a
i ⌧ , where a

i (x±
i , n) is the net displace-

ment in the ask-side order book resulting from a buy trade
in asset i at time n. The net displacement is given by the
difference between the TPI and PPI at time n:

a
i (x±

i , n)⇤
x+

i , n

qa
i

�
X
j2I
�i j(x+

j, n � x�
j, n).

Using these expressions, and removing the recursion in da
i , n�1,

the aggregate TPI can be written as

da
i , n ⇤

nX
k⇤1

 x+

i , k�1

qa
i

�
X
j2I
�i j(x+

j, k�1 � x�
j, k�1)

�
e�⇢

a
i (n�k+1)⌧ .

Note, the recursive vector form of the aggregate TPI
across all assets given in Equation (16) follows immediately
from the previous expressions, in particular, da

i , n ⇤ [(da
n�1 +

axn�1)e�⇢a⌧]i and thus da
n ⇤ (da

n�1 + 
axn�1)e�⇢a⌧ .

Combining the aggregate PPI and TPI terms, and repeat-
ing similar steps for the bid side, we obtain the following

expressions for the best available ask and bid prices of asset i
at each time n:

ai , n ⇤ ui , n + si/2+
nX

k⇤1

X
j2I
�i j�xj, k�1

+

nX
k⇤1

✓ x+

i , k�1

qa
i

�
X
j2I
�i j�xj, k�1

◆
e�⇢

a
i (n�k+1)⌧ ,

bi , n ⇤ ui , n � si/2+
nX

k⇤1

X
j2I
�i j�xj, k�1

+

nX
k⇤1

✓
�

x�
i , k�1

qb
i

�
X
j2I
�i j�xj, k�1

◆
e�⇢

b
i (n�k+1)⌧ .

where �xj, k�1 ⇤ (x+

j, k�1 � x�
j, k�1). Extending the above steps

to all assets, and using vector notation, we can obtain the
final vector forms for the best available ask and bid prices in
Equations (15a) and (15b). ⇤
Proof of Lemma 3 (Execution Costs/Revenues). Following an
executed order, the associated costs/revenues can simply be
calculated by integrating the best available bid/ask prices
over the total amount of units executed x. It follows that

ci , n(x)⇤
π x

0
a⇤

i , n(u) du and ri , n(x)⇤
π x

0
b⇤

i , n(u) du ,

where a⇤
i , n(x) and b⇤

i , n(x) are given in (7). Specifically, for an
incoming order x ⇤ x+

i , n or x ⇤ x�
i , n , we find

ci , n(x+

i , n)⇤
✓
ai , n +

x+

i , n

2qa
i

◆
x+

i , n and ri , n(x�
i , n)⇤

✓
bi , n �

x�
i , n

2qb
i

◆
x�

i , n .

Equivalently, in vector notation: cn ⇤ x+
n
0(an +Qax+

n ) and rn ⇤

x�
n
0(bn �Qbx�

n ). ⇤

A.3. Proof of Lemma 4—Concavity
This section proves Lemma 4 by showing that the iterative
structure of the dynamic problem preserves concavity at all
times. The procedure follows closely from the results pre-
sented in section 3.2 (operations the preserve convexity) of
Boyd and Vandenberghe (2004; hereinafter BV). The next
lemma summarizes these results.
Lemma A1 (BV). Denote by x[0, n]

def
⇤ [x0; . . . , xn] and u[0, n]

def
⇤

[u0; . . . ;un] the vector of the first n trade and shock vectors x and u,
respectively. Further, let f : R2mn⇥mn ! R and g: R2m(n�1) ! R.
Suppose f (x[0, n]; ·) is concave in x[0, n]. Then,

(a) for ↵ > 0, the composite function �e�↵ f (x[0, n] ;·) is concave
in x[0, n]�
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(b) for k  n, the conditional expectation

⇧
⇥

f
�
x[0, n];u[0, n]

� | u[0, k]
⇤

is concave in x[0, n]�
(c) the maximization over element xn ,

g(x[0, n�1]) def
⇤max

xn�0
f (x[0, n] , ·),

is concave in x[0, n�1].
Proof. Part (a) follows from section 3.2.4 (simple composi-
tion results with exponentials) of BV. Part (b) follows from
section 3.2.1 (infinite nonnegative weighted sums and inte-
grals of convex functions) of BV. Part (c) follows from sec-
tion 3.2.5, problem 3.16 (minimization over convex sets)
of BV. ⇤

Now, consider the dynamic program Jn ⇤ maxxn�0 ⇧[Jn+1].
At time 0, this can be written in nested expectations:

J0 ⇤max
x0�0

⇧0

h
max
x1�0

⇧1

h
. . . max

xN�1�0
⇧N�1

h
max
xN�0

⇧N [�e�↵WN ]
i
. . .

i i
,

where the stochastic wealth function is given by (25):

WN ⇤ W0� �u0�̄0x� z0
0⇤z0 � (y0

0Ā
0N̄)x� x0Dx,

D def
⇤ 1

2 (B̄0N̄+ N̄0B̄)+ Q̄.

Suppose WN is concave in x[0,N], for any realizations of
u[0,N]. Then, (a) by Lemma A1(a), WN concave ) �e�↵WN

concave for ↵ > 0; (b) by Lemma A1(b), �e�↵WN concave )
⇧N [�e�↵WN ] concave; (c) by Lemma A1(c), ⇧N [�e�↵WN ]
concave)maxxN�0 ⇧N [�e�↵WN ] def

⇤ JN concave in x[0,N�1].
The above shows that all relevant operators preserve con-

cavity. Now consider the next iteration. By Lemma A1(b),
JN concave in x[0,N�1] implies ⇧N�1[JN ] concave in x[0,N�1].
By Lemma A1(c), ⇧N�1[JN ] concave in x[0,N�1] implies
maxxN�1 ⇧N�1[JN ] def

⇤ JN�1 concave in x[0,N�2]. Rolling the argu-
ment backwards, we obtain that for all n 2 {1, . . . ,N}, the
stage objective Jn is concave in x[0, n�1].

Therefore, to ensure that the DP is strictly concave, it suf-
fices to impose strict joint concavity in all xn on the terminal
wealth WN . Given its quadratic form in (25), this is ensured
if D is positive definite. ⇤

A.4. Proof of Propositions 1 and 2—DP Solution
This section proves Propositions 1 and 2 by solving the DP
through induction. Before proceeding, we introduce interme-
diate results.

A.4.1. Piecewise Quadratic (PWQ) Optimization
We begin by introducing a preliminary result which will
be useful in stating our main results later. Let x 2 ✓m1 and
y 2 ✓m2 . Define the following PWQ optimization problem:

J(y) def
⇤maximize

x2D , x�0
f (x,y), (A.1)

with f : ✓m1 ⇥✓m2 ! ✓ being a strictly concave, continuous,
PWQ function with L pieces indexed by j:

f (x,y)⇤ f j(x,y) if (x,y) 2 D j ,
where f j(x,y)⇤� 1

2 x0M jx�y0N j0x,

with associated regions defined by general polyhedral sets D j

(e.g., D j ⇤ {(x,y) |A jxB jy}), where D⇤ {D j : j 2L} is a poly-
hedral decomposition of dom f . We have the following result.

Result A1. (a) The solution to (A.1), denoted x⇤(y), exists, which
is single valued, continuous, and has a piecewise-affine structure,
that is, it can be written as

x⇤(y)⇤K(y)y, where K(y) is piecewise constant. (A.2)

(b) J(y) is a continuous PWQ function in y.
(c) x⇤(y) and J(y) are subdifferentiable.
(d) The generalized KKT conditions associated with problem

(A.1) are sufficient to characterize the solution (A.2), given by
(K1) Optimality� 0 2 @x[ f (x,y) + ⌫0x], where ⌫ is the

Lagrange nonnegativity multiplier and @( · ) denotes the sub-
differential.

(K2) Primal feasibility� x � 0.
(K3) Dual feasibility� ⌫ � 0.
(K4) Complementary slackness� ⌫ ⌦ x⇤ 0.

The KKT regularity conditions are automatically satisfied since all
constraints are polyhedral.

Proof. Problem (A.1) can be considered as a subcase of
the more general PWQ program studied in Patrinos and
Sarimveis (2011; hereinafter PS), problem (4), whose proper-
ties are given in PS proposition 5. We only need to establish
the connection to their setting, namely, the parameter y $ p,
the solution x⇤ $ X and the objective J(y) $ V(p).19 Thus,
(A.1) is a subcase of the PWQ problem (4) studies in PS.

(a) Result A1(a) follows from PS proposition 5(b), which
states that under strict convexity (concavity in our case), the
solution to PS problem (4) is single-valued, piecewise affine
and (Lipschitz) continuous in p. Thus, (A.2) follows directly
from the piecewise affine structure of the solution.20

(b) The PWQ structure in Result A1(b) follows directly
from PS proposition 5(a). Continuity of J(y) follows directly
from the continuity property of the optimal solution.

(c) Subdifferentiability in Result A1(c) follows directly
from Results A1(a) and A1(b). In particular, the subdifferenti-
ability of a piecewise linear and a convex PWQ function fol-
lows from the fact their subgradients are polyhedral (Rock-
afellar and Wets 1998, proposition 10.21).

(d) The generalized KKT conditions for subdifferentiable
functions are established in the literature, for instance, see
Ruszczynski (2006, chap. 3.6, pp. 133–135). ⇤

Note, PWQ problems have been extensively studied in the
literature and the results in Patrinos and Sarimveis (2011)
and by extension, in Result A1(a)–(d) have been established
in more general settings. A classic reference is Rockafellar
and Wets (1998, chaps. 10.E and 11.D). The authors provide
a formal definition of a PWQ in definition 10.20, establish
continuity and subdifferentiability in propositions 10.21 and
11.32(b)(c) (and by extension, in exercise 7.45), and establish
the general polyhedral structure of the optimal solution in
exercise 10.22 and corollary 11.16.

A.4.2. Terminal Time N
We now turn to our problem. We first examine the problem at
the final time N , which reveals the structure of the solution.
Following (20), the wealth at the terminal time is

WN ⇤ WN�1 � (u0
N�

0
+ z00⇤�

0
+y0

NN)xN � x0
NQxN , (A.3)

which is a continuous strictly concave quadratic function
of xN . The assumption in Lemma 4 that WN is strictly concave
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in x0 , . . . , xN trivially implies that WN is strictly concave in the
optimization variable xN . Further, uN is realized at N , thus
the terminal optimization problem is deterministic, given by

JN ⇤maximize
xN�0

(�e�↵WN ) s.t. �0xN ⇤ zN .

By monotonicity of the exponential, argmaxxN
�e�↵WN ⇤

argmaxxN
WN , for ↵ > 0, which turns our problem into a stan-

dard concave linear quadratic problem, with polyhedral con-
straints. From the equality constraint, the terms �0xN ⇤ zN ,
leading to

maximize
xN�0

�
WN�1 �u0

NzN � z00⇤zN �y0
NNxN � x0

NQxN
 
,

s.t. �0xN ⇤ zN .

Ignoring the terms that do not depend on the optimiza-
tion variable (i.e., WN�1 � u0

NzN � z00⇤zN ), the problem at N
becomes a special case of the general PWQ problem (A.1),
with a single piece j ⇤ L ⇤ 1, and polyhedral constraints
�0xN ⇤ zN and xN � 0. As the problem is deterministic at
time N , the solution x⇤

N is deterministic as well. Also, from
Result A1, x⇤

N is continuous in yN , and can be written like
in (A.2).

Though it is not required for the proof, we can take a few
more steps to explicitly characterize x⇤

N by using the standard
KKT conditions at N . For any asset i, there are three cases
to consider: if zi ,N > 0, then the optimal trade is a buy order:
x+

i ,N ⇤ zi ,N , and x�
i ,N ⇤ 0; if zi ,N < 0, then the optimal trade

is a sell order: x+

i ,N ⇤ 0, and x�
i ,N ⇤ �zi ,N ; if zi ,N ⇤ 0, then

x+

i ,N ⇤ x�
i ,N ⇤ 0 and this can be viewed as a buy or a sell order

of size 0. Using indicator functions we can compactly write
the solution as follows:

x⇤
N ⇤ kN (zN )zN , kN (zN )⇤


diag[1z1,N>0 , . . . , 1zm ,N>0]
�diag[1z1,N<0 , . . . , 1zm ,N<0]

�
.

(A.4)

Note, from the above, one can also see that x⇤
N is continuous

in zN . The regions that define its pieces, D j
N (zN ), are given

through the inequalities in the indicator functions, and their
closure constitutes a polyhedral decomposition of dom x⇤

N .
Lastly, using the simple transformation zN ⇤ i0yN , with i ⇤
[0; I;0;0], we can rewrite the solution as:

x⇤
N ⇤KN (yN )yN , KN (yN )⇤ kN (i0yN )i0, (A.5)

where K(yN ) is a piecewise constant matrix, containing 1’s
and 0’s.

For convenience, we introduce the following quantity:

QN (yN )⇤ y0
NNx⇤

N + x⇤0
NQx⇤

N ⇤ y0
NM̂NyN ,

where x⇤
N ⇤KNyN and

M̂N ⇤ 1
2 ((NKN +K0

NQKN )+ (NKN +K0
NQKN )0). (A.6)

Here, QN (yN ) represents the cash (net of fundamental value)
generated by the optimal trade x⇤

N at t ⇤N—the first equation
expresses it in terms of the optimal policy at t ⇤ N and the
second equation expresses it in terms of the underlying state
variables. The wealth WN in (A.3) now can be expressed as

WN (x0 , . . . , xN�1 , x⇤
N ) ⇤ WN�1 �u0

NzN � z00⇤zN �QN (yN )
def
⇤ ŴN . (A.7)

We refer to WN (x0 , . . . , xN�1 , x⇤
N ) ⇤ ŴN as the “wealth-to-go,”

i.e, the wealth under the optimal strategy at terminal time N .
By Lemma A1(c), strict concavity of WN ( · ) in x0 , . . . , xN guar-
antees strict concavity of ŴN in x0 , . . . , xN�1. The value func-
tion can then be expressed as

JN (WN�1 ,yN ,uN )⇤�e�↵ŴN . (A.8)

By Lemma A1(a), strict concavity of ŴN implies strict concav-
ity of JN in x0 , . . . , xN�1. From Result A1, x⇤

N is continuous and
subdifferentiable in yN . It then follows that QN (yN ) is also a
continuous and subdifferentiable PWQ in yN .

Two important observations are in order: First, we will
refer to the value function in (A.8) as separable, in the sense
that the noise term u0

NzN appears as an additive linear term
inside the exponential. Separability will be key to ensure that
the optimal policy remains deterministic at all n.

A.4.3. Induction
Following the above results for N , we propose that they con-
tinue to hold at time n + 1:

(P0) At time n + 1, we have

x⇤
n+1

def
⇤Kn+1yn+1 , (A.9a)

Jn+1
def
⇤�e�↵Ŵn+1 , (A.9b)

Ŵn+1
def
⇤ Wn �u0

n+1zn+1 � z0
0⇤zn+1 �Qn+1(yn+1),

Qn+1(yn+1)
def
⇤ y0

n+1M̂n+1yn+1 ,
(A.9c)

and Jn+1 and Ŵn+1 are strictly concave in x[0, n] ⇤ [x0; . . . ;xn],
where Qn+1(yn+1) is PWQ, continuous, subdifferentiable, and
its pieces, defined by polyhedral sets D j

n+1(yn+1), constitute a
polyhedral decomposition of dom Qn+1.

Clearly, (P0) holds for n+1⇤ N . We want to show that (P0)
being true at n + 1 implies that it is also true at n:

(P1) x⇤
n retains the piecewise linear form of (A.9a), and is

continuous and subdifferentiable; and
(P2) Jn retains the separable form of (A.9b), and is contin-

uous, subdifferentiable.

A.4.4. Proof of (P1)—The Optimal Trade at n
The value function at n can be obtained through the value
function at n + 1 from

Jn ⇤ maximize
xn�0

En[Jn+1]

⇤ maximize
xn�0

⇧n[�e�↵Ŵn+1 ] def
⇤�e�↵Ŵn . (A.10)

We proceed to express Ŵn+1
�
Wn ,yn+1 ,un+1

�
as a function of

the optimization variable xn and the current state dynamics.
First, we deal with Wn . Following (20), we have

Wn ⇤ Wn�1 � (u0
n�

0
+ z0

0⇤�
0
+y0

nN)xn � x0nQxn .

Plugging this expression for Wn into Ŵn+1 in (A.9b) gives

Ŵn+1 ⇤ Wn�1 � (u0
n�

0
+ z00⇤�

0
+y0

nN)xn � x0
nQxn

�u0
n+1zn+1 � z0

0⇤zn+1 �y0
n+1M̂n+1yn+1.

First, we deal with the term z00⇤zn+1 ⇤ z00⇤(zn � �0xn) ⇤
z0

0⇤zn � z0
0⇤�

0xn . This leads to

Ŵn+1 ⇤ Wn�1 � (u0
n�

0
+y0

nN)xn � x0
nQxn �u0

n+1zn

� z0
0⇤zn �y0

n+1M̂n+1yn+1.
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Next, we deal with the random walk term �u0
n+1zn+1 using

the dynamics for un+1 and zn+1:

�u0
n+1zn+1 ⇤�(u0

n + ✏
0
n+1)(zn ��0xn)

⇤�u0
nzn +u0

n�
0xn � ✏0n+1(zn ��0xn).

Substituting this expression back into Ŵn+1, we have

Ŵn+1 ⇤ Wn�1 � (��u0
n�

0
+y0

nN)xn � x0
nQxn �u0

nzn +⇠⇠⇠u0
n�

0xn

� ✏0n+1(zn ��0xn)� z0
0⇤zn �y0

n+1M̂n+1yn+1

⇤ Wn�1 �y0
nNxn � x0

nQxn �u0
nzn � ✏0n+1(zn ��0xn)

� z00⇤zn �y0
n+1M̂n+1yn+1.

Next, we need to express yn+1 as a function of the state at n
using the state dynamics (19), that is, yn+1 ⇤Ayn +Bxn , which
gives

Ŵn+1 ⇤ Wn�1 � z0
0⇤zn �y0

nNxn � x0nQxn � (Ayn +Bxn)0
· M̂n+1(Ayn +Bxn)�u0

nzn � ✏0n+1(zn ��0xn).
Given Fn (including un and yn), the only remaining source
of risk is ✏0n+1, which is normally distributed. Thus Ŵn+1 is
normally distributed and we have

Jn ⇤maximize
xn�0

En[�e�↵Ŵn+1 ]

⇤maximize
xn�0

�e�↵(⇧n [Ŵn+1]�(1/2)↵Varn [Ŵn+1]).

By the induction definition (A.9b), Jn
def
⇤ �e�↵Ŵn . Then, by

monotonicity of the exponential, and identification, the opti-
mization problem above is equivalent to

Ŵn
def
⇤maximize

xn�0
⇧n[Ŵn+1]� 1

2↵Varn[Ŵn+1]. (A.11)

Computing the mean and variance given Fn is straight-
forward:

⇧n[Ŵn+1] ⇤ Wn�1 � z0
0⇤zn �y0

nNxn � x0
nQxn �u0

nzn

� (Ayn +Bxn)0M̂n+1(Ayn +Bxn), (A.12)
Varn[Ŵn+1] ⇤ (zn ��0xn)0(⌧⌃)(zn ��0xn)

⇤ (i0yn ��0xn)0(⌧⌃)(i0yn ��0xn).
Before computing the solution, we can further simplify the
stage objective

f̃n
def
⇤ ⇧n[Ŵn+1]� 1

2↵Varn[Ŵn+1]
by dropping the terms that do not affect the optimiza-
tion over xn (i.e., the additive terms Wn�1 � z00⇤zn � u0

nzn �
y0

n(A0M̂n+1A+ 1
2↵⌧i⌃i0)yn). We refer to this simplified objec-

tive as fn . This allows us to conveniently write the manager’s
optimization problem at n in compact form

maximize
xn�0

fn(xn ,yn)
def
⇤� 1

2 x0
nMnxn �y0

nNnxn , (A.13)

where

Mn ⇤
�
B0M̂n+1B+Q+ 1

2↵⌧�⌃�
0�

+
�
B0M̂n+1B+Q+ 1

2↵⌧�⌃�
0�0, (A.14a)

Nn ⇤N+A0(M̂n+1 + M̂0
n+1)B� ↵⌧i⌃�0. (A.14b)

From (A.13), it is clear that we are dealing with a deter-
ministic maximization problem over a piecewise quadratic
and continuous objective function, with nonnegativity con-
straints on the control variables. All noise terms have been
canceled out or are irrelevant with respect to the optimiza-
tion. Thus, the optimal maximizer, if it exists, is deterministic.

A.4.5. Solution at Time n
To characterize the solution, we need to show that the prob-
lem fits the framework of PWQ program described in Sec-
tion A.4. First, we show that the stage problem preserves
concavity. We have the following result.

Result A2. If Ŵn+1 is strictly concave in x[0, n], then (a) f̃n is
strictly concave in x[0, n], and therefore fn is strictly concave in the
optimization variable xn , and (b) Ŵn is strictly concave in x[0, n�1].

Proof. (a) The objective f̃n is a sum of expectation and vari-
ance terms. By Lemma A1(b), Ŵn+1 strictly concave in x[0, n]
implies ⇧n[Ŵn+1] strictly concave in x[0, n]. Next, notice that
Varn[Ŵn+1] is a quadratic form in x[0, n]. In particular, from (1),
zn � �0xn ⇤ z0 � Pn

i⇤0 �
0xi

def
⇤ z0 � �0[0, n]x[0, n], where �0[0, n]

def
⇤

diag(�0, . . . ,�0) and z0 is constant. Substituting this into (A.12)
gives

Varn[Ŵn+1]⇤ (z0 ��0[0, n]x[0, n])0(⌧⌃)(z0 ��0[0, n]x[0, n]).

Given ⌃ is a covariance matrix, it is positive semidefinite, and
since ⌧ > 0 is a positive scalar, Varn[Ŵn+1] is convex in x[0, n].
Hence � 1

2↵Varn[Ŵn+1] is concave in x[0, n], for ↵ > 0. As f̃n is
the sum of a strictly concave function with a concave func-
tion, it is strictly concave in x[0, n]. It follows the simplified
objective fn is strictly concave in xn .

(b) From (A.11) and Result A2(a), Ŵn
def
⇤ maxxn

f̃n , with f̃n
strictly concave in x[0, n]. Therefore, by Lemma A1(c), Ŵn is
strictly concave in x[0, n�1]. ⇤

Second, we need to show that the pieces of fn constitute a
polyhedral decomposition.

Result A3. The regions of fn(xn ,yn) constitute a polyhedral
decomposition �in yn� of the domain of fn .

Proof. Observe that from the induction assumption (P0), the
pieces of Qn+1 (and hence of M̂n+1 ,Mn ,Nn) constitute a poly-
hedral decomposition in yn+1. This implies that the regions
can generally be written as

D j
n+1 ⇤

�
(xn+1 ,yn+1) | A

j
n+1xn+1  B j

n+1yn+1
 
.

From the induction assumption (A.9a), x⇤
n+1 ⇤ Kn+1yn+1, and

from the system dynamics, yn+1 ⇤Ayn +Bxn , thus

D j
n+1 ⇤

�
(xn ,yn) | A

j
n+1Kn+1(Ayn +Bxn)  B j

n+1(Ayn +Bxn)
 
,

which is clearly polyhedral in yn . Furthermore, the addi-
tional positivity requirement xn � 0 is trivially polyhedral
in yn (without loss, it can be written as xn � 0yn). Thus
fn(xn ,yn) is PWQ and its regions constitute a polyhedral
decomposition. ⇤

Following Result A3, Result A1 holds, implying that the
optimal trade can be written as

x⇤
n ⇤Kn(yn)yn ,

for some piecewise constant Kn(yn). Lastly, from Result A1,
x⇤

n is continuous and subdifferentiable with respect to yn .
This completes the induction property (P1). ⇤

Before moving on to show (P2), we can provide some
additional guidance as to how the structure of the solu-
tion emerges through the generalized KKT conditions in
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Result A1(d). We provide an outline below and refer inter-
ested readers to the literature (e.g., Patrinos and Sarimveis
2011) that has developed efficient algorithms to deal with the
required computations.

Let ⌫n ⇤ [⌫+n ;⌫�n ] be the associated Lagrange nonnegativ-
ity multipliers at n. We have the following generalized KKT
conditions:

(K1) Optimality: 0 2 @xn
[ fn(xn ,yn)+ ⌫0nxn].

(K2–K4) xn � 0, ⌫n � 0 and ⌫n ⌦ xn ⇤ 0.
To observe how the piecewise affine structure emerges

from the above KKT conditions, it is helpful to split the
domain of f between differentiable points, and nondiffer-
entiable points which can occur at the boundaries between
regions D j

n+1.
In the differentiable regions, the subdifferential condition

(K1) reduces to a standard first-order condition (FOC) on the
gradients:

0⇤Mnxn +N0
nyn � ⌫n , (A.15)

which leads to a standard piecewise linear solutions. To see
this, note that we can write without loss of generality:

xn ⇤


x(+)

n
0

�
, ⌫n ⇤


0
⌫(+)n

�
,

where [xn](+) denotes the subvector of nonzero trades, [⌫n](+)
denotes the subvector of nonzero multipliers. Clearly, ⌫n ⌦
xn ⇤ 0. We can then write (A.15) as21

0⇤

Mn , 11 Mn , 12
Mn , 21 Mn , 22

� 
x(+)

n
0

�
+


N0

n , 1
N0

n , 2

�
yn �


0
⌫(+)n

�
. (A.16)

This leads to the following linear structure for xn and ⌫n in
this region:

xn ⇤


�M�1

n , 11N0
n , 1

0

�
yn , ⌫n ⇤


0

�Mn , 12M�1
n , 11N0

n , 1 +N0
n , 2

�
yn .

Therefore, the solution in this region clearly has the piecewise
linear structure of (A.2). In fact, the piecewise linear structure
also applies to the multiplier.

Next, we deal with any nondifferentiable point, which can
occur at the boundaries of regions Dn+1. At any such a bound-
ary point xC

n , if 0 2 @xC
n
[ fn(xC

n ,yn)+ ⌫0nxC
n ], then it is the global

maximum. From Result A3, regions Dn+1 constitute a poly-
hedral decomposition in yn and hence any point xC

n at the
boundary of these regions is necessarily polyhedral in yn .
Therefore in this region, any optimal solution xb

n has the same
general structure of (A.2).

A.4.6. Proof of (P2)—The Value Function at n.
The next step is to compute the value function Jn . Substitut-
ing the optimal trade policy x⇤

n ⇤ Knyn into the objective we
just optimized in (A.13) yields

f ⇤n ⇤� 1
2 x⇤

n
0Mnx⇤

n �y0
nNnx⇤

n ⇤�y0
n

� 1
2 K0

nMnKn +NnKn
�
yn .

Plugging this into Jn and adding back the irrelevant terms
omitted preoptimization, we obtain:

Jn ⇤�e�↵Ŵn

with

Ŵn
def
⇤max

xn�0

�
f̃n ⇤ (Wn�1 �u0

nzn � z0
0⇤zn �y0

nM̂nyn)
 
, where

M̂n ⇤
1
2 K0

nMnKn +
1
2 (NnKn +K0

nN0
n)+A0M̂n+1A

+ 1
2↵⌧i⌃i0. (A.17)

As the last step, let

Qn(yn)⇤ y0
nM̂nyn .

Then we can write the value function as

Jn(Wn�1 ,un ,yn)
⇤�e�↵Ŵn ⇤�exp

⇥
�↵(Wn�1 �u0

nzn � z0
0⇤zn �Qn(yn))

⇤
.

Thus, the value function retains the same form in (A.9b).
Lastly, we need to verify concavity and continuity. For con-
cavity, from Result A2(b), Ŵn is strictly concave in x[0, n�1], and
thus by Lemma A1(a), Jn is strictly concave in x[0, n�1] for ↵ > 0.
The recursion thus preserves concavity at all iterations (con-
cavity at the terminal time N was shown in Section A.4). For
continuity, following Result A1, the value function is continu-
ous everywhere. This concludes the induction property (P2).

It follows by induction that (P1) and (P2) hold for all
time periods, and the proof is complete for Propositions 1
and 2. ⇤

A.5. Proof of Proposition 3—Static QP Equivalence
Proposition 1 allows us to reformulate the problem (21) as
a large, but static, quadratic program. We prove this in two
steps: First, Section A.5 shows that under Proposition 1, static
and dynamic formulations are equivalent at all times. Sec-
ond, Section A.5 reformulates the static problem into a QP.

A.5.1. DP/Static Equivalence
Let Vn represent the static problem, truncated to arbitrary
time n 2 {0, . . . ,N}, that is,

Vn ⇤ max
xn ,...,xN�0

⇧n
⇥
�e�↵WN

⇤
, (A.18)

where ⇧n[ · ]⇤ ⇧[· | Fn]. We have the following result.

Corollary 1. Under Proposition �, the static and dynamic formu-
lations are fully equivalent, that is, Jn ⇤ Vn , 8 n 2 {0, . . . ,N}.
Proof. We proceed by induction, starting at the terminal
time N . The equality VN ⇤ JN is trivial to show: we have VN ⇤

maxxN�0 ⇧N [�e�↵WN ] ⇤ maxxN�0 �e�↵WN ⇤ JN , where the sec-
ond equality follow from the fact that uN is realized at time
N , and the third equality follows from the definition of JN .

At an arbitrary time n, assume

Vn+1 ⇤ Jn+1. (A.19)

We want to show this implies Vn ⇤ Jn . We have

Jn ⇤max
xn�0

⇧n[J⇤n+1]⇤max
xn�0

⇧n[Vn+1]

⇤max
xn�0

⇧n

h
max

xn+1 ,...,xN�0
⇧n+1[�e�↵WN ]

i
,

where the first equality follows from the induction assump-
tion (A.19) and the second follows from the definition of Vn+1
in (A.18) with n ! n + 1. From Proposition 1, xn+1 , . . . , xN are
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path independent, hence the max and expectation operators
at are commutable at n. This leads to the following:

Jn ⇤max
xn�0

max
xn+1 ,...,xN�0

⇧n[⇧n+1[�e�↵WN ]]

⇤ max
xn ,...,xN�0

⇧n[⇧n+1[�e�↵WN ]]⇤ max
xn ,...,xN�0

⇧n[�e�↵WN ]⇤ Vn ,

where the third equality follows from the law of iterated
expectations (i.e., tower property) and the fourth follows
from the definition of Vn in (A.18). This allows us to conclude
that J0 ⇤ V0 by induction. Hence, any optimal solution to the
static problem is also an optimal solution to the dynamic
problem. ⇤

A.5.2. QP Reformulation
Next, we show how V0 can be transformed into a QP. From
(25), the stochastic terminal wealth function can be compactly
written as

WN ⇤ W0� �u0�̄0x� z0
0⇤z0 � (y0

0Ā
0N̄)x� x0Dx.

Using Proposition 1, we can treat the optimal controls as
deterministic variables. It follows that the only source of
uncertainty in the problem is the random walk, implying
that the manager’s total postexecution wealth is normally
distributed. We have that WN ⇠N(µWN

, �2
WN

), where

µWN
⇤ ⇧0[WN ] ⇤ W0� �u0

0Ī�̄
0x

� z0
0⇤z0 � (y0

0Ā
0N̄)x� x0Dx (A.20)

and
�2

WN
⇤Var0[WN ]⇤ x0�̄⌃u�̄

0x, (A.21)
where u0

0 contains the initial asset prices (assumed > 0)
and ⌃u is the covariance matrix of the noise process vector
u⇤ [u0; . . . ; uN ].

A consequence of the normal distribution is that we can
establish equivalence between the manager’s exponential
utility and the mean-variance objective often used in the
execution literature. This follows directly from the identity
⇧[e↵W ]⇤ e⇧[↵W]+ 1

2 ↵
2 Var[W], for any normally distributed W , and

from the monotonicity of the exponential. The manager’s
original optimization problem over his exponential utility
can thus be equivalently written as

max
x2Sx
µWN

� 1
2↵�

2
WN
, (A.22)

where the feasible set Sx ⇤ {x | x � 0, Ī�̄0x ⇤ z0}. The first con-
dition is the positivity constraint on the inputs, and the sec-
ond ensures that all inputs sum to the manager’s total order
size z0. Using this equivalent form and the Equations (A.20)
and (A.21), the manager’s optimization problem becomes

max
x2Sx

W0� �u0
0z0 � z0

0⇤z0 � (y0
0Ā

0N̄)x� x0
�
D+ 1

2↵�̄⌃u�̄
0�x.

The above problem can be equivalently written as a mini-
mization problem over the risk-adjusted execution shortfall
(i.e., risk-adjusted net execution cost) by subtracting the con-
stant (W0� �u0

0z0), that is, the initial wealth and preexecution
value of the portfolio, and multiplying the objective by (�1).
The problem then becomes

min
x2Sx

z0
0⇤z0 +y0

0Ā
0N̄x+ x0 �D+ 1

2↵�̄⌃u�̄
0�x.

Let D⇤
⇤D+ 1

2↵�̄⌃u�̄
0. Since we have x0D⇤x⇤ x0((D⇤

+D⇤0)/2)x,
we set the symmetric form 1

2 D̄⇤ ((D⇤
+D⇤0)/2). So finally, the

optimization problem is equivalent to

minimize
x2Sx

� 1
2 x0D̄x+ (y0

0Ā
0N̄)x+ z0

0⇤z0
 
. ⇤

Endnotes
1 For example, Perold (1988) shows that execution can reduce returns,
leading to a significant “implementation shortfall.”
2 See also Almgren (2009), Lorenz and Almgren (2012), He and
Mamaysky (2005), and Schied and Schoeneborn (2009). For empir-
ical foundations, see Bouchaud et al. (2009) for a survey as well as
the references in Alfonsi et al. (2008, 2010) and Obizhaeva and Wang
(2013). For studies on how trade size affects prices, see Chan and
Fong (2000), Chan and Lakonishok (1995), Chordia et al. (2002), and
Dufour and Engle (2000).
3 See also Alfonsi et al. (2008, 2010), Bayraktar and Ludkovski (2011),
Chen et al. (2013), Cont et al. (2010), Obizhaeva and Wang (2013),
Maglaras et al. (2015), and Predoiu et al. (2011). In other related work,
Rosu (2009) develops a full equilibrium game theoretic framework
and characterizes several important empirically verifiable results
based on a model of a limit order market for one asset. Moallemi et al.
(2012) develop an insightful equilibrium model of a trader facing
an uninformed arbitrageur and show that optimal execution strate-
gies can differ significantly when strategic agents are present in the
market.
4 The existence of cross asset price-impact effects has been empir-
ically documented and theoretically justified. It can simply result
from dealers’ attempts to manage their inventory fluctuations; see
for example, Chordia and Subrahmanyam (2004) and Andrade et al.
(2008). Kyle and Xiong (2001) show that correlated liquidity shocks
due to financial constraints can lead to cross liquidity effects. King
and Wadhwani (1990) argue that in the presence of information
asymmetry among investors, correlated information shocks can lead
to cross asset liquidity effects among fundamentally related assets.
Fleming et al. (1998) show that portfolio rebalancing trades from pri-
vately informed investors can lead to cross impact in the presence
of risk aversion, even between assets fundamentally uncorrelated.
Pasquariello and Vega (2015) develop a stylized model and provide
empirical evidence suggesting that cross impact may stem from the
strategic trading activity of sophisticated speculators who are try-
ing to mask their informational advantage. Hasbrouck and Seppi
(2001) find that both returns and order flows can be characterized
by common factors. Lastly, evidence of comovement stemming from
sentiment-based views has been studied in Barberis et al. (2005).
5 A more concrete example of how price-impact models can be inte-
grated in a broader portfolio selection problem can be found in Iancu
and Trichakis (2014), which focuses on the multiaccount portfolio
optimization problem. A discussion regarding the applicability of
advanced cross asset strategies and how they relate to agency trading
and best execution constraints also can be found in the same paper.
6 Disentangling cross impact from correlation for individual securi-
ties is a challenging statistical problem which is beyond the scope
of this paper. Empirical estimation of cross impact is an active area
of research for high-frequency trading firms and also could be an
interesting direction for future academic research. See Schneider and
Lillo (2017) for a recent study.
7 See Moallemi and Sağlam (2013) for a study regarding the optimal
placement of limits orders. See Maglaras et al. (2017) for a study on
order placement in fragmented markets.
8 The best available ask price, ai , n , is the lowest price at which a
market buy order could (partially or fully) be executed at time n.
Similarly, the best available limit bid price bi , n is the highest price at
which a market sell order could be executed.
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9 We refer to Alfonsi et al. (2010) for a discussion about general
types of density functions and to Predoiu et al. (2011) for an equiv-
alence between discrete and continuous models. A queuing-based
approach can be found in Cont et al. (2010).
10 Although the random walk assumption implies a nonzero proba-
bility of negative prices, it is not a concern in our framework given
the short-term horizon of optimal execution problems in practice. As
such, this assumption is commonly used in this literature.
11 We focus on a single buy order, implying x�

i , n ⇤ 0, but the results
are directly applicable to sell orders as well.
12 We do not illustrate the impact of the random walk here to keep
the figures clear. In order words, we are holding ui , n constant.
13 The linearity assumption on the permanent price-impact function
is consistent with theorem 1 of Huberman and Stanzl (2004), which
provides conditions under which the price-impact model does not
admit arbitrage and price manipulation strategies.
14 Assumption 4 could be relaxed with alternative functional form
specifications. The exponential form has the advantage of only
requiring a single parameter to describe the replenishment process,
keeping the problem tractable. Further, this form has been adopted
in previous literature and is in line with several empirical findings on
the order book replenishment process. See, for example, Biais et al.
(1995) for a detailed empirical study.
15 To see this, note that D is positive (semi)definite in Lemma 4. As⌃u
is a covariance matrix, it is positive semidefinite by definition, hence
D̄ is a sum of positive (semi)definite matrices and given ↵ > 0, is thus
positive (semi)definite.
16 Note, this does not imply that the actual bid-ask spread is zero
during the execution process. Unsurprisingly, increasing the steady-
state bid-ask spread leads to higher overall execution costs, reducing
the applicability of advanced trading strategies. A detailed analysis
is provided in Appendix A.1.
17 The rest of the parameters used in this section are the volatilities
�1 ⇤ �2 ⇤ 0.05, the order book densities q1 ⇤ q2 ⇤ 1,500, the replenish-
ment rates ⇢1 ⇤ ⇢2 ⇤ 5, and the permanent impact parameters �11 ⇤

�22 ⇤ 1/(3q1). These parameters are used to generate all the figures,
unless otherwise specified.
18 The portfolio is initially equally weighted, consisting of 100 shares
of each asset. Unless otherwise specified, the rest of the parameters
used in this section are v1, 0 ⇤ v2, 0 ⇤1, �1 ⇤ �2 ⇤ 0.05, �11 ⇤�22 ⇤ 1/(3q1),
and �12 ⇤ �21 ⇤ 0.
19 For completeness, match the objective functions by changing max
to min, and observe j $ k, Qk $M j , R0

k $N j0 , Sk ⇤ 0, qk ⇤ 0, rk ⇤ 0,
sk ⇤ 0. Matching the constraints: C j $ D j , A j $ Ak , B j $ Bk , and
bk ⇤ 0. The authors also require the objective function to be proper,
a property that is trivially satisfied in the case of strict concavity,
as long as the function’s effective domain is nonempty, dom f , ú
(Kumar 1991, proposition 2.1.5). Also note, the additional positivity
constraint in our setting x � 0 is without loss. This could be readily
incorporated in the definition of the polyhedral regions D j , however,
we explicitly separate it out for later convenience.
20 Any single-valued piecewise affine function can be written like in
(A.2) for a properly chosen piecewise constant K(y) and vector y.
To see this, consider that if X (in the PS setting) is single-valued
and piecewise affine, then by definition, each piece can be writ-
ten as Xk(p) ⇤ Zkp + ck if p 2 Dk(p), for some constants Zk , ck , and
where the regions Dk(p) combine to form a polyhedral decomposi-
tion. Through a change of variable, letting y ⇤ [1 p] and Kk

⇤ [ck Zk],
observe that Xk(p) ⇤ Zkp+ ck ⇤ [ck Zk][1 p0]0 ⇤ Kky. Then, define the
piecewise constant K(y)⇤Kk if y 2 Dk(y), which leads to the desired
result in (A.2).
21 Note that since (A.16) is reexpressed in terms of the re-sorted vec-
tors xn and ⌫n , this implies that the corresponding Mn and Nn have
also undergone the necessary transformations such that (A.15) con-
tinues to hold.
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